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Abstract 

Background:  Schistosomiasis control is striving forward to transmission interruption and even elimination, evidence-
lead control is of vital importance to eliminate the hidden dangers of schistosomiasis. This study attempts to identify 
high risk areas of schistosomiasis in China by using information value and machine learning.

Methods:  The local case distribution from schistosomiasis surveillance data in China between 2005 and 2019 was 
assessed based on 19 variables including climate, geography, and social economy. Seven models were built in three 
categories including information value (IV), three machine learning models [logistic regression (LR), random forest 
(RF), generalized boosted model (GBM)], and three coupled models (IV + LR, IV + RF, IV + GBM). Accuracy, area under 
the curve (AUC), and F1-score were used to evaluate the prediction performance of the models. The optimal model 
was selected to predict the risk distribution for schistosomiasis.

Results:  There is a more prone to schistosomiasis epidemic provided that paddy fields, grasslands, less than 2.5 km 
from the waterway, annual average temperature of 11.5–19.0 °C, annual average rainfall of 1000–1550 mm. IV + GBM 
had the highest prediction effect (accuracy = 0.878, AUC = 0.902, F1 = 0.920) compared with the other six models. The 
results of IV + GBM showed that the risk areas are mainly distributed in the coastal regions of the middle and lower 
reaches of the Yangtze River, the Poyang Lake region, and the Dongting Lake region. High-risk areas are primarily dis‑
tributed in eastern Changde, western Yueyang, northeastern Yiyang, middle Changsha of Hunan province; southern 
Jiujiang, northern Nanchang, northeastern Shangrao, eastern Yichun in Jiangxi province; southern Jingzhou, southern 
Xiantao, middle Wuhan in Hubei province; southern Anqing, northwestern Guichi, eastern Wuhu in Anhui province; 
middle Meishan, northern Leshan, and the middle of Liangshan in Sichuan province.

Conclusions:  The risk of schistosomiasis transmission in China still exists, with high-risk areas relatively concentrated 
in the coastal regions of the middle and lower reaches of the Yangtze River. Coupled models of IV and machine learn‑
ing provide for effective analysis and prediction, forming a scientific basis for evidence-lead surveillance and control.
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Background
As one of 20 neglected tropical diseases, schistosomia-
sis is a typical zoonotic parasitic disease that remains a 
major public health problem worldwide [1]. In the 1950s, 
schistosomiasis was endemic in 12 southern Chinese 
provinces in close proximity to the Yangtze River. China 
was one of the countries with the heaviest schistosomia-
sis burden with more than 10 million patients. Over the 
past 70  years of active control, China’s schistosomiasis 
control program has achieved remarkable success [2]. By 
the end of 2020, 337 (74.9%) of the 450 schistosomiasis 
endemic counties in China had achieved the elimina-
tion standard, 97 (21.6%) have achieved the transmission 
blocking standard and 16 (3.6%) have achieved transmis-
sion control [3]. However, the risk of schistosomiasis 
transmission still exists in China because many natural 
conditions and socio-economic factors involved in the 
process of schistosomiasis transmission are difficult to 
change fundamentally in the short term [2, 3]. China’s 
13th Five-Year Plan for national schistosomiasis control 
identifies risk monitoring and early warning to be essen-
tial to reduce potential transmission risk. Prediction 
model design is an effective means by which to achieve 
accurate monitoring and evidence-lead control of schis-
tosomiasis [4].

There are two methods for infectious disease risk 
prediction: a knowledge-driven method (qualita-
tive method), and a data-driven method (quantitative 
method) [5]. There are four components to the process of 
development: epidemic data processing, environmental 
factor selection, model construction, and model evalu-
ation. In particular, the application of geographic infor-
mation system (GIS), remote sensing (RS), and global 
positioning system (GPS) in infectious disease research 
accelerates the development of quantitative risk predic-
tion [6]. Commonly used qualitative methods are the 
analytic hierarchy process (AHP) and the Delphi method. 
For example, Ajakaye et al. [7] used AHP to evaluate the 
transmission risk of schistosomiasis in Nigeria. Yang et al. 
[8] used the Delphi method to establish a schistosomia-
sis early warning index in the middle and lower reaches 
of the Yangtze River. The results for early warning were 
consistent with epidemic levels based on a recent epi-
demiological survey. A single quantitative method or 
a combination of multiple quantitative methods is fre-
quently used. Solano-Villarreal et  al. [9] used a boosted 
regression tree to study the transmission risk of malaria 
in the Loreto area. Xia et al. [10] combined a variety of 
classification algorithms including random forest (RF) 

and a generalized boosted model (GBM) in BioMod2, to 
construct a combined model that predicted the potential 
distribution of Oncomelania hupensis in the Dongting 
Lake region. The combined model had greater prediction 
accuracy.

Information value (IV) is derived by statistical quan-
titative analysis of data based on information theory. A 
model is based on the influencing factors of an epidemic 
as well as an evaluation of risk for the region [11]. As an 
example, Rai [12] used IV to establish a malaria suscep-
tibility index. IV has high modeling efficiency and can 
judge the weight of various influencing factors. Classi-
fication algorithms such as logistic regression (LR), RF, 
and GBM can determine the weight of each influencing 
factor [5]. IV and classification algorithms can predict 
vector-borne infectious disease during the initial stage. 
For example, Chen et  al. [13] used a coupled model of 
IV and LR (IV + LR) to predict hot spots of hemorrhagic 
fever with renal syndrome in Hunan Province of China, 
resulting in more accurate prediction. The application 
of information value combines with other models for 
risk assessment of infectious diseases is also increasing, 
which makes up for the lack of simple information value 
model, and simple machine learning. Based on epidemic 
data and related environmental factors, we used IV com-
bined with LR, RF, and GBM respectively, to evaluate and 
predict the risk for schistosomiasis transmission. The 
purpose of this study was to compare different methods 
to predict the high-risk distribution of schistosomiasis, 
so as to provide a methodological basis for evidence-lead 
control of schistosomiasis.

Methods
Study area
The study area included 31 provinces (municipalities and 
autonomous regions) in the mainland of China. China 
is rich in geomorphic resources, with many lakes and 
beaches as well as a wide range of tropical and subtropi-
cal monsoon climates. Areas around lakes tend to have a 
gentle climate with abundant rainfall and vegetation suit-
able for the breeding of O. hupensis. This combination of 
factors increases the residents’ risk for schistosomiasis, 
especially in the south of the Yangtze River Basin.

Data collection
Case and non‑case data
Schistosomiasis data were derived from the national 
schistosomiasis survey of 2005–2019 [14, 15]. Villages 
with indigenous cases were selected as distribution points 

Keywords:  Schistosomiasis, Risk prediction, Information value, Machine learning, China



Page 3 of 11Gong et al. Infect Dis Poverty           (2021) 10:88 	

(Fig. 1). Longitude and latitude coordinates of the distri-
bution points were identified with the Baidu map coor-
dinate picking system (http://​api.​map.​baidu.​com/​lbsapi/​
getpo​int/​index.​html). The model calibration required 
both case and non-case data, but non-occurrence point 
were usually ignored and not recorded in the field sur-
vey. This study randomly selected coordinate points for 
nonexistent points in non-endemic counties adjacent to 
schistosomiasis endemic counties based on a ratio of 1:2 
in order to increase the discrimination of environmental 
factors.

Environmental data
Environmental variables related to schistosomiasis 
and its vector snail distribution were collected. This 
included ten climate variables, six geographical vari-
ables, and three socio-economic variables, as shown 
in Table  1. Among the climate related variables, four 
types of background meteorological data were derived 
from the Resource and Environmental Science and 
Data Center of the Chinese Academy of Sciences 
(http://​www.​resdc.​cn/) and represent conventional cli-
mate conditions. The other six bioclimatic variables 
were based on the high-resolution climate data web-
site WorldClim (https://​www.​world​clim.​org/). Those 
data included mean diurnal temperature range (BIO2), 

temperature annual range (BIO7), mean temperature 
of the warmest quarter (BIO10), mean temperature of 
the coldest quarter (BIO11), precipitation of the wet-
test quarter (BIO16), and precipitation of driest quarter 
(BIO17). These data represent extreme climatic condi-
tions and limit the distribution range of S. japonicum 
and O. hupensis. Elevation and annual normalized 
vegetation index for the geographic environmental 
variables were from the Resource and Environment Sci-
ence and Data Center of Chinese Academy of Sciences 
(http://​www.​resdc.​cn/). Landform types and land use 
types are from the National Earth System Science Data 
Sharing Platform (http://​www.​geoda​ta.​cn). Distance 
to waterways was obtained from WorldPop (https://​
www.​world​pop.​org/). Socio-economic variables includ-
ing gross domestic product (GDP), population density, 
and night light, which were obtained from the Resource 
and Environment Science and Data Center of Chinese 
Academy of Sciences (http://​www.​resdc.​cn/). ArcGIS 
10.2 (Environmental Systems Research Institute, Inc, 
USA) was used to trim all environmental variables to 
the same spatial range and then resampled to a spatial 
resolution of 1 km × 1 km.

Fig. 1  Case location and river distribution in this study

http://api.map.baidu.com/lbsapi/getpoint/index.html
http://api.map.baidu.com/lbsapi/getpoint/index.html
http://www.resdc.cn/
https://www.worldclim.org/
http://www.resdc.cn/
http://www.geodata.cn
https://www.worldpop.org/
https://www.worldpop.org/
http://www.resdc.cn/
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Analytical modeling
Information value (IV) model
IV [13] uses the frequency or density of schistosomiasis 
occurrence to reflect the risk effect of different influenc-
ing factors and their sub-intervals. An IV is calculated 
that represents the contribution of different influencing 
factors related to the occurrence of schistosomiasis. A 
regional risk assessment for schistosomiasis transmission 
is realized through the spatial superposition of multi-fac-
tor information [13]. The formula is as follows:

where n is the total number of evaluation factors 
selected in the study area; Ni is the number of schis-
tosomiasis units distributed in evaluation factors; N is 
the total number of schistosomiasis units in the region; 
Si is the number of units with evaluation factors in the 
region; S is the total number of evaluation units in the 
region.

When I is positive, the combination of multiple fac-
tors will increase the risk of schistosomiasis in grid 
cells, otherwise, it is not conducive to the occurrence 
of schistosomiasis. The IV model was implemented in R 
4.0.0 (R Development Core Team; R foundation for Sta-
tistical Computing; Vienna, Austria) using the "score-
card" package (Table 2).

I =
∑n

i=1
lg
Ni/N

Si/S

Machine learning
A logistic regression model (LR) [16] is a statistical 
nonlinear classification method based on logit trans-
formation, which is widely used in classification and 
prediction tasks due to its simplicity, rapidity, and 
relative accuracy. A random forest model (RF) [17] is 
a predictive model based on statistical analysis princi-
ples formed by the combination of multiple decision 
trees. A generalized boosted model or gradient boost-
ing machine (GBM) [18] is based on two algorithms: 
regression trees and gradient boosting. It builds mul-
tiple regression trees on the basis of self-learning 
and multiple random selections. The machine learn-
ing models associate the epidemic data with the driv-
ers, and then apply the association to the study area 
to estimate the disease risk of schistosomiasis. LR 
and GBM uses the "H20" package, and RF uses the 

Table 1  Summary of environmental variables related to the distribution of schistosomiasis and Oncomelania hupensis 

Category Variable
name

Definition Source

Climate variables AR Aridity http://​www.​resdc.​cn/

IM Index of moisture

AAP Average annual precipitation

AAT​ Average annual temperature

BIO2 Mean diurnal temperature range https://​www.​world​clim.​org/

BIO7 Temperature annual range

BIO10 Mean temperature of warmest quarter

BIO11 Mean temperature of coldest quarter

BIO16 Precipitation of wettest quarter

BIO17 Precipitation of driest quarter

Geographic variables LF Landform http://​www.​geoda​te.​cn/

LD Land use

SLOPE Slope https://​www.​world​pop.​org/

DST Distance to waterway

EL Elevation http://​www.​resdc.​cn/

ANDVI Annual normalized difference
vegetation index

Socio
-economic variables

GDP Gross domestic product http://​www.​resdc.​cn/

DP Density of population

NTL Night-time lights

Table 2  Confusion matrix of binary classification results

a. True predicted presence; b. False predicted presence; c. False predicted 
absence; d. True predicted absence

Predicted result Predicted presence Predicted 
absence

Investigated presence a b

Investigated absence c d

http://www.resdc.cn/
https://www.worldclim.org/
http://www.geodate.cn/
https://www.worldpop.org/
http://www.resdc.cn/
http://www.resdc.cn/
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"randomForest" package to implement the modeling 
process in R 4.0.0.

Model coupling
Using calculated information value “I” to replace the cor-
responding frequency ratio of LR, sample variable values 
for RF and GBM, and coupled models (IV + LR, IV + RF, 
and IV + GBM) are obtained. The modeling path of this 
research is shown in Fig. 2.

Model evaluation
The sample data were randomly divided into two parts: 
75% as training samples for model construction, and 
25% as test samples to evaluate the accuracy, referred to 
relevant literature [19]. A confusion matrix was used to 
reflect the comprehensive performance of the models 
(Table 2). The accuracy, area under the curve (AUC), and 
F1-score derived from the confusion matrix were used to 
evaluate the prediction effect comprehensively.

Accuracy = (a + d)/(a + b + c + d); F1 = (2(a/(a + b) × a/
(a + c))/(a/(a + b) + a/(a + c)). The higher the accuracy 
and F1, the better the prediction effect of the model [20]. 
The AUC is derived from the receiver operating charac-
teristic curve, which takes the true positive rate (a/a + c) 
as the ordinate and the false positive rate (b/b + d) as the 
abscissa according to a series of different dichotomies. 
The AUC threshold is (0, 1), the larger the AUC value, the 
better the performance of the model [21].

Risk visualization analysis
We selected the optimal model based on the evaluation 
indicator and calculated the transmission risk index for 

the study area. Then, the area was divided into four lev-
els: no-risk area (0.00–0.40), low-risk area (0.41–0.60), 
medium-risk area (0.61–0.80), and high-risk area (0.81–
1.00) [22].

Results
Correlation analysis among schistosomiasis 
and environmental factors
Based on the principle of chi-square binning, the upper 
limit of binning is set to 8, and the IV of different levels of 
influencing factors is calculated according to the binning 
situation (Table  3). When annual average temperature 
is 11.5–19.0  °C, the annual average rainfall is 1000–
1550 mm, the dryness is 66–92%, and the wetness index 
is 45–70%, schistosomiasis is more likely to occur. In 
this geographic environment, the risk of schistosomiasis 
transmission is higher when the distance from waterways 
is less than 2.5  km, the altitude is less than 100  m, the 
land use is paddy field, grassland, and water area, and the 
landform type is plain. Extreme climate and geographic 
conditions are not conducive to the spread of schistoso-
miasis: for example, annual rainfall of less than 1000 mm 
or more than 1550  mm, annual average temperature of 
less than 11.5 °C or more than 19 °C, average temperature 
during the hottest season of less than 27 °C, rainfall in the 
wettest season of less than 500 mm, and distance to the 
waterway of more than 3  km, with a slope greater than 
six (Table 4).

Comparison of prediction results based on the seven 
models
Prediction results for IV, by three machine learning mod-
els (LR, RF, GBM), and three coupled models (IV + LR, 
IV + RF, IV + GBM) are shown in Additional file 1: Fig. 1, 
Additional file  2: Fig.  2, Additional file  3: Fig.  3, Addi-
tional file  4: Fig.  4, Additional file  5: Fig.  5, Additional 
file  6: Fig.  6, Additional file  7: Fig.  7. IV shows that the 
schistosomiasis risk is widely distributed throughout the 
Yangtze River Basin and its southern areas. High-risk 
areas are mainly distributed in southern Hubei, north-
ern Hunan, northwestern Jiangxi, and central Anhui. 
Prediction results for the three machine learning mod-
els had similarities and differences. The possibility for 
schistosomiasis transmission was mainly concentrated 
in the middle and lower reaches of the Yangtze River by 
three machine learning models. LR indicated the risk was 
also distributed in northern Xinjiang and southwestern 
Tibet. RF showed a lower risk in southern Guangzhou. 
GBM showed a lower risk in northern Xinjiang. Predic-
tion results for the three coupled models were better 
than those for the single models. There was no obvious 
abnormal risk in north of the Yangtze River, although 

Fig. 2  Implementation path of model building
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small detail differences in risk areas were observed. For 
example, IV + RF showed no obvious risk area in cen-
tral Sichuan or northwestern Yunnan, as opposed to 
IV + GBM.

The predicted performance for schistosomiasis by the 
seven models as judged by transmission risk, accuracy, 
AUC, and F1 for each model was calculated (Table  5). 
Sorted model prediction results were ordered as follows: 
AUC, IV + GBM > IV + RF > GBM > IV + LR > IV > RF > L
R. Overall, the coupled models had the best results, fol-
lowed by the three machine models, and then the infor-
mation model. The best of the three machine learning 
models was GBM, and the best of the three coupled 
models was IV + GBM (accuracy = 0.878, AUC = 0.902, 
F1 = 0.920).

Risk prediction of schistosomiasis transmission in China 
based on the optimal coupled model
Prediction results for GBM + IV showed the risk of schis-
tosomiasis in China to be scattered through a large spa-
tial range, although clusters appeared in southeastern 
Hubei province, northeastern Hunan province, northern 
Jiangxi province, central Anhui province, central Sichuan 
province, northwestern Yunnan province, and southern 

Jiangsu province. Superimposed on the national river 
map, risk areas were concentrated in the coastal areas of 
the middle and lower reaches of the Yangtze River, Poy-
ang Lake region, and Dongting Lake region.

Classification of transmission risk shows that 4.7% of 
China is in an at-risk area and 95.3% is not. Risk areas 
can be divided into low-risk (2.5%), medium-risk (1.4%), 
and high-risk areas (0.8%). High-risk areas are primarily 
distributed in eastern Changde, western Yueyang, north-
eastern Yiyang, middle Changsha of Hunan province; 
southern Jiujiang, northern Nanchang, northeastern 
Shangrao, eastern Yichun in Jiangxi province; southern 
Jingzhou, southern Xiantao, middle Wuhan in Hubei 
province; southern Anqing, northwestern Guichi, east-
ern Wuhu in Anhui province; middle Meishan, northern 
Leshan, and the middle of Liangshan in Sichuan province 
(Fig. 3). Medium-risk areas and low-risk areas are distrib-
uted in areas adjacent to high-risk areas, as well as south-
ern Jiangsu and northwestern Yunnan.

Discussion
Due to the unique life history of S. japonicum and O. 
hupensis, as well as the numerous terminal hosts of S. 
japonicum, the epidemic process for schistosomiasis is 

Table 3  Number and meaning of environmental factor classification based on the principle of chi-square binning

AAP average annual temperature, AAT​ annual accumulated temperature, IM index of moisture, AR aridity, BIO2 mean diurnal temperature range, BIO7 temperature 
annual range, BIO10 mean temperature of warmest quarter, BIO11 mean temperature of coldest quarter, BIO16 mean precipitation of wettest quarter, BIO17 
mean precipitation of driest quarter, LF landform, LD land use, SLOPE slope, DST distance to waterway, EL elevation, ANDVI annual normalized difference vegetation 
index, GDP gross domestic product, DP density of population, NTL night-time lights

Factors Number Classification index

AAP (mm) 8  < 850; 850–950; 950–1000; 1000–1350; 1350–1450; 1450–1500; 1500–1550; > 1550

AAT (°C) 8  < 11.5; 11.5–16.0; 16.0–17.0; 17.0–17.5; 17.5–18.0; 18.0–18.5; 18.5–19.0; > 19.0

IM (%) 8  < 45; 45–50; 50–55; 55–60; 60–65; 65–70; 70–90; > 90

AR (%) 8  < 62; 62–66; 66–68; 68–72; 72–74; 74–92; 92–95; > 95

BIO2 8  < 7.3; 7.3–7.8; 7.8–7.9; 7.9–8.2; 8.2–8.6; 8.6–9.3; 9.3–9.9; > 9.9

BIO7 8  < 24; 24–27.5; 27.5–29; 29–31; 31–31.5; 31.5–33; 33–33.5; > 33.5

BIO10 (°C) 8  < 17; 17–20; 20–22; 22–25; 25–26.5; 26.5–27; 27–28; > 28

BIO11 (°C) 8  < 5.8; 5.8–6.0; 6.0–6.2; 6.2–6.4; 6.4–6.6; 6.6–7.6; 7.6–8.6; > 8.6

BIO16 (mm) 8  < 440; 440–460; 460–480; 480–500; 500–520; 520–540; 540–560; > 560

BIO17 (mm) 8  < 20; 20–50; 50–130; 130–140; 140–155; 155–160; 160–175; > 175

LF 6 Plains; terraces; hills; small undulating mountains; medium undulating mountains; 
large undulating mountains

LD 7 Paddy field; dry land; woodland; grassland; water area; urban and rural residential 
land; unused land

EL (m) 7  < 50; 50–100; 100–450; 450–700; 700–2150; 2150–2500; > 2500

SLOPE (°) 8  < 2; 2–3; 3–6; 6–9; 9–13; 13–22; 22–29; > 29

DST (km) 8  < 0.5; 0.5–1.0; 1.0–1.5; 1.5–2; 2–2.5; 2.5–3; 3–3.5; > 3.5

ANDVI 8  < 0.78; 0.78–0.79; 0.79–0.8; 0.8–0.81; 0.81–0.82; 0.82–0.83; 0.83–0.84; > 0.84

GDP
(10 000/km2)

7  < 50; 50–100; 100–150; 150–250; 250–350; 350–800; 800–1000; > 1000

DP (Person/km2) 8  < 100; 100–150; 150–200; 200–250; 250–400; 400–450; 450–550; > 550

NTL 8  < 0.08; 0.08–0.10; 0.10–0.12; 0.12–0.14; 0.14–0.16; 0.16–0.18; 0.18–0.54; > 0.54
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exceedingly complex. Geographic, climatic, socio-eco-
nomic, and other factors affect the scope and degree of 
schistosomiasis [23]. In this study, coupled models for IV 
and machine learning were used to evaluate factors that 
interfere with schistosomiasis transmission. A spatial 
distribution pattern of potential risks provided a support 
tool for the formulation of macroscopic schistosomiasis 
control strategies and the development of a quantitative 
risk assessment model for communicable diseases.

In our study, coupled models of IV and machine learn-
ing were applied to schistosomiasis transmission risk. 
Coupled models were used to establish statistical rela-
tionships among case distribution and environmental 
factors, providing a new method for analysis and predic-
tion of hot spots of schistosomiasis transmission. By com-
paring the seven model indicators, we found that coupled 
models have better prediction accuracy than IV and 

machine learning models alone. The prediction results 
more accurately reflected the spatial distribution of risk 
for schistosomiasis. Differences in prediction results and 
goodness of fit were found for the seven models, reflect-
ing model uncertainty. A final, optimal model, GBM + IV, 
was selected to predict the risk for schistosomiasis trans-
mission. That model reduced the errors associated with 
the other models. Machine learning algorithms cannot 
express the relationships among the influencing factor’s 
internal levels and the occurrence of schistosomiasis. IV 
does not consider differences in the weight contribution 
of influencing factors [24]. The higher success rate for 
the coupled model is that it considers the internal level of 
influencing factors and the weight of different influencing 
factors in relationship to schistosomiasis [25]. Therefore, 
risk prediction results are more scientific and reasonable.

Table 4  Results for grading information value by environmental influencing factors

AAP average annual temperature, AAT​ annual accumulated temperature, IM index of moisture, AR aridity, BIO2 mean diurnal temperature range, BIO7 
mean temperature annual range, BIO10 mean temperature of warmest quarter, BIO11 mean temperature of coldest quarter; BIO16 mean precipitation of wettest 
quarter, BIO17 mean precipitation of driest quarter, LF landform, LD land use, SLOPE slope, DST distance to waterway, EL elevation, ANDVI annual normalized difference 
vegetation index, GDP gross domestic product, DP density of population, NTL night-time lights

Grade 1 2 3 4 5 6 7 8

AAP − 1.435 − 0.941 − 0.789 0.223 0.901 1.219 0.118 − 0.811

AAT​ − 2.970 0.411 0.647 0.693 0.544 1.067 0.582 − 0.305

IM − 0.498 0.916 0.095 0.693 0.818 1.587 − 0.288 − 1.466

AR − 1.224 − 0.693 0.836 0.773 0.383 0.228 − 0.801 − 1.447

BIO2 0.547 1.176 0.319 0.323 0 − 0.553 − 1.194 − 1.269

BIO7 − 0.406 − 0.651 − 1.504 − 1.355 0.357 0.774 0.568 − 1.082

BIO10 − 2.773 − 0.838 − 0.693 − 1.674 − 0.827 − 1.584 0.894 1.192

BIO11 − 1.064 1.121 1.121 1.118 0.847 0.228 − 0.773 − 0.406

BIO16 − 0.916 − 0.074 − 0.442 − 1.065 0.598 0.223 0.811 0.180

BIO17 − 2.110 − 0.887 − 0.203 0.499 1.421 0.767 0.534 − 0.095

LF 0.950 1.068 0.766 − 0.300 − 0.742 − 1.789

LD 0.347 0.169 − 0.266 0.342 0.234 0.123 − 1.634

SLOPE 0.841 0 − 0.187 − 1.099 − 2.485 − 0.821 − 0.949 − 1.946

DST 0.395 0.560 0.821 0.442 0.147 − 0.406 0 − 0.515

EL 0.959 0.195 − 1.126 − 0.167 − 0.975 − 0.651 − 2.169

ANDVI 0.227 − 0.105 − 0.486 0.223 − 0.452 − 0.223 − 1.299 − 0.256

GDP − 1.052 − 0.065 0.035 0.773 0.619 0.218 0.211 0.511

DP − 0.946 − 0.102 − 1.179 0.560 0.431 0.368 1.099 0.621

NTL − 0.887 − 0.674 0.111 − 0.827 0.143 0.470 0.186 0.450

Table 5  Predictive performance indicators for the seven models

IV information value, LR logistic regression, RF random forest, GBM generalized boosted model, AUC​ area under the curve

Model IV LR IV + LR RF RF + IV GBM IV + GBM

Accuracy 0.732 0.790 0.815 0.785 0.820 0.849 0.878

AUC​ 0.750 0.827 0.853 0.840 0.872 0.859 0.902

F1 0.705 0.867 0.871 0.854 0.875 0.903 0.920
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Predicted middle-risk and high-risk areas based 
on the optimal coupled model were consistent with 
the areas of schistosomiasis transmission control and 

blocking in China [26]. Combined with the distribution 
of water areas in China, the coastal areas of middle and 
lower reaches of the Yangtze River, the Poyang Lake 

Fig. 3  Current risk prediction for schistosomiasis in China based on the optimal coupled model
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region, and the Dongting Lake region are the high-
risk areas for schistosomiasis spread. This is likely due 
to the wide distribution and high density of O. hupen-
sis in those areas [27]. Further, there are numerous 
water conservancy projects, frequent population flow, 
developed animal husbandry industries, and increased 
opportunities for human and animal contact, placing 
these regions at risk for schistosomiasis rebound [28, 
29]. With the implementation of comprehensive control 
strategy focused on the control of infectious source, 
the distribution pattern of intermediate host, the com-
position and distribution trend of infectious source, 
and the mode of population activity in epidemic area 
have changed significantly. Moreover, flood disaster 
[30], wetland construction [31] may lead to increased 
risk of snail diffusion, global warming [32] will pro-
long the growth season of Schistosoma and O. hupen-
sis and speed up their growth. Hence, there is a greater 
risk for infection in the areas described above. In the 
epidemic risk areas, we recommend O. hupensis moni-
toring, strengthened infection control of domestic and 
wild animals, and timely assessment of epidemic schis-
tosomiasis. In this manner, the goal of schistosomiasis 
elimination by 2030 will be achieved [33].

The relationships among the spatial change of schistoso-
miasis risk and environmental factors can be explained by a 
biological knowledge of S. japonicum and snails [34]. Suita-
ble climatic conditions, small slopes, and proximity to rivers 
are conducive to the growth and reproduction of S. japoni-
cum and snails [35], which in turn leads to the prevalence of 
schistosomiasis. This study demonstrates that temperature, 
rainfall, altitude, and the risk of schistosomiasis transmis-
sion are closely related. Abnormal climatic conditions will 
have a negative impact on an epidemic, which confirms pre-
vious studies using different methods [36]. Certainly, envi-
ronmental factors determine the transmission dynamics of 
schistosomiasis. Previous studies [37] have shown that land 
use greatly affects the distribution and density of snails in 
rice fields. When water is high and in proximity to a river, 
there is an increased risk for infection. This may be due to 
the increased risk of swimming, fishing, and agricultural 
activities in contact with water bodies containing cercariae 
[38]. This study did not find a high risk for schistosomiasis 
transmission in economically backward areas, which may be 
due to the large scope of the study. Schistosomiasis is mainly 
prevalent in rural villages in the middle and lower reaches 
of the Yangtze River. Although these villages belong to eco-
nomically backward areas, their economic development 
level is relatively better compared with remote western areas 
such as villages in Xinjiang, Tibet and Gansu that does not 
have the natural conditions for schistosomiasis epidemic. 
Further, results were based on surveillance data from 2005 
to 2019 in China, which is accurate and reliable. However, 

there may be errors in the analysis of relationships among 
influencing factors and transmission risk due to insufficient 
case numbers.

This study has some limitations. First, although IV + GBM 
provided high goodness of fit, the potential risk for schis-
tosomiasis remains uncertain, because of other associated 
factors such as snail control, cattle grazing, water conserv-
ancy construction, and behaviors [39–41]. Second, risk pre-
diction based on IV + GBM identified sporadic high risk in 
northern Zhejiang, which is inconsistent with the known 
elimination of schistosomiasis in Zhejiang. The reason may 
be that the environment in the area is very similar to that 
of the case distribution point, but due to the intervention 
of human factors, there is no longer an epidemic of schisto-
somiasis in Zhejiang. For the future, more variables related 
to disease transmission should be collected, which would 
enrich the data set. Further, IV combined with more clas-
sification algorithms would improve assessment. These 
approaches would result in better predictive model per-
formance and provide guidance for monitoring and early 
warning of disease in key areas.

Conclusions
This study confirmed that a model that combines IV and 
machine learning is better than a single model. Among the 
models, the optimal coupling model had a better predictive 
performance for schistosomiasis risk assessment, roughly 
consistent with the actual situation. These results can guide 
monitoring and control of schistosomiasis and serve as a 
reference for predicting the risk of other vector-mediated 
infectious diseases.
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