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Abstract

Mechanisms and outcomes of host-parasite interactions during malaria co-infections with gastrointestinal helminths
are reasonably understood. In contrast, very little is known about such mechanisms in cases of malaria co-infections
with tissue-dwelling parasites. This is lack of knowledge is exacerbated by misdiagnosis, lack of pathognomonic clinical
signs and the chronic nature of tissue-dwelling helminthic infections. A good understanding of the implications of tissue-
dwelling parasitic co-infections with malaria will contribute towards the improvement of the control and management of
such co-infections in endemic areas. This review summarises and discusses current information available and
gaps in research on malaria co-infection with gastro-intestinal helminths and tissue-dwelling parasites with
emphasis on helminthic infections, in terms of the effects of migrating larval stages and intra and extracellular
localisations of protozoan parasites and helminths in organs, tissues, and vascular and lymphatic circulations.
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Introduction
Malaria is a deadly infectious disease and one of the
main health problems facing developing countries in
Sub-Saharan Africa (SSA) and Asia. Globally, 3.4 bil-
lion people are at risk of new malaria infections, and
there are around one million deaths annually [1–3].
Plasmodium falciparum, Plasmodium vivax, Plasmo-
dium malariae, Plasmodium ovale and Plasmodium
knowlesi parasites infect humans under normal condi-
tions [4] with P. falciparum and P. vivax being the
major species that cause morbidity and mortality in
children under five years of age, pregnant women and
travellers from non-malarious areas [5, 6].
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In SSA, morbidity and mortality due to malaria is de-
creasing despite a lack of a malaria vaccine, emergence
of parasite resistance to available anti-malarial drugs, the
anopheline mosquito being resistant to insecticide residual
spraying and a poor socio-economic situation that hinders
malaria control and management [7–9]. Efforts in drug
discovery and vaccine development are hindered by
limited knowledge of the underlying cellular and mo-
lecular mechanisms of host-parasite interactions dur-
ing co-infection and polyparasitism [10, 11]. This is
also aggravated by the emergence of zoonotic P.
knowlesi malaria infections [12–14] as well as other
zoonotic infectious diseases [15, 16]. Trichinellosis is
an emerging and re-emerging zoonotic disease the geo-
graphical distribution of which overlaps with malaria in
endemic areas of Tanzania, Uganda, Kenya, Ethiopia,
Zimbabwe, South Africa and Mozambique [17–23]. The
development of vaccines against parasitic infections has
been complicated due to the fact that co-infecting para-
sites have life cycles that are either direct or complex. Dir-
ect life cycles involve cycling of mature parasites from one
definitive host to another while complex life cycles involve
cycling of distinct developing life stages through a number
of intermediate hosts [24]. Parasite cycling within
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intermediate hosts causes trafficking of molecular epitopes
resulting in a generation of parasites variant surface anti-
gens and excretory and/or secretory products that act as
host immuno-regulators during co-infections and clinical
trials, and hinders the understanding of parasite biology
[25–36].
Epidemiological studies have shown that the largest

burden of malaria infections is felt by communities liv-
ing in poor regions of developing countries [37–39]. In
these areas, high prevalence of soil-transmitted hel-
minthic infections have also been documented [40]. This
results in co-infections, multi-parasitism or polyparasit-
ism [41]. In the past three decades, several studies have
been undertaken to establish the nature of interaction
that occurs between soil-transmitted helminths (STHs)
and malaria during co-infection scenarios. The studies
have mainly focused on immunological aspects and dis-
ease outcomes neglecting non-immunological mecha-
nisms that may explain the heterogeneity observed in
these studies [42, 43]. Varying conclusions have been
made from both epidemiological studies and laboratory
experiments. Some studies have established that hel-
minths may confer protection against cerebral malaria,
others indicate that helminths exacerbate malaria, others
report a reduction or increase in prevalence and trans-
mission of malaria, while a few others report no associ-
ation between the parasites [44–47]. The lack of general
consensus in the studies is evidence that malaria im-
munity is not well understood. However, it is argued that
STHs influence clinical malaria disease presentation or
confer malaria tolerance through the establishment of
chronic infections, induction of adaptive immunity [48]
and immunosuppression of immune responses to unre-
lated antigens and parasites [49]. These result in an in-
duction of host regulatory immunity, and signalling and
effector mechanisms [50–52] that are beneficial to co-
infecting parasites. This is mainly due to host’s failure to
regulate the immune responses induced by the parasites.
During co-infections, one parasite does not have direct in-
fluence on disease outcome and establishment of another
parasite, however, the concept of parasite-host-parasite in-
teractions plays a key role. One parasite influences the host
to induce immune responses that will favour its establish-
ment which in the long run, become beneficial to the co-
infecting parasite. This immunological phenomenon is
parasite-driven to make the host susceptible to infection
and not favour the establishment of the co-infecting para-
site. The amelioration or exacerbation of the disease out-
come of the co-infecting parasites is a spill-over effect.
In the majority of co-infection studies, tissue-dwelling

parasites, prevalent in SSA, have not been adequately
considered. The hypothetical arguments presented are
sketchy, making it difficult to clearly predict disease out-
comes during malaria interaction with tissue-dwelling
parasites. In this review, we discuss and summarise the
available information and research gaps in studies
undertaken on the interactions between malaria and
tissue-dwelling parasites.

Review
Methods
Information sources
The online bibliographic databases, MEDLINE/PubMed,
EMBASE, Web of Science, Cochrane Library and Google
Scholar were searched for studies on host-parasite interac-
tions of malaria co-infection with tissue-dwelling hel-
minths (up to May 2015). Bibliographic lists and references
of the selected papers and previous reviews were used as
leads for identification of additional studies.

Literature search
The search was conducted using predefined medical
subject heading (MeSH) terms, Boolean operators (OR,
AND) and truncation symbols used in combinations of
direct key words: malaria, protozoa, co-infection, nema-
todes, tissue-dwelling parasites, cestodes, trematodes,
intracellular parasites, helminths AND all permutations
of MeSH terms in all fields.

Study selection
Studies were included in the review if they explicitly re-
ported on immune responses and disease outcomes during
malaria co-infection with: (i) tissue and organ-dwelling
parasitic protozoa; (ii) migrating parasitic helminths and
protozoa; and (iii) vascular and lymphatic circulation
dwelling parasites. One hundred and sixty-eight (168) stud-
ies were retrieved from the search of published work, of
which 13 were excluded because of duplication and 123
were irrelevant because they were dealing with malaria co-
infections and soil-transmitted parasites. Therefore, 32
studies including abstracts, reviews and reports on malaria
co-infection with tissue-dwelling parasites were selected
and reviewed. No grey literature was included. All articles
were managed using Mendeley Desktop reference manager
version 1.13.3 (NY, USA). The results of the analysis of the
full papers read are described below.

Results
Migratory helminths and protozoans, and malaria
co-infections
Poor hygiene and sanitary conditions, and dysfunctional
health delivery systems in developing countries predispose
people living in these areas to STH infections [53, 54]. For
example, humans acquire trichinellosis through ingestion
of raw or undercooked meat contaminated with infective
Trichinella larvae [55], or gastrointestinal helminthiases/
protozoa infection by ingesting food and water contami-
nated with embryonated eggs/cysts [19, 56, 57]. Some
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STHs and protozoans have complicated life cycles that in-
volve a tissue migration phase where larvae obligately mi-
grate through host vital organs causing tissue damage and
myositis [58–61]. The tissue migrating larvae (ML) or
protozoa trigger induction of immunomodulation [62]
through the release of excretory and/or secretory products
that act as natural stimuli for stimulation of type 2 skewed
immune responses [63]. The Th2 immune responses abro-
gate inflammation, delay worm expulsion and initiate tis-
sue repair [59, 64]. But knowledge of these immunological
pathways and signalling are not well described indicating
the need for more research to disentangle the underlying
immunological scenarios that occur.
Several co-infection studies have been designed and con-

ducted on the assumption that chronic helminths may alter
malaria severity and immunity either through Th2/T regu-
latory lymphocyte immunomodulation, altered antibody
dependent cellular inhibition, immunosuppression of pro-
inflammatory activity or presence of cross reactive anti-
bodies [47, 65]. On the contrary, Hoeve et al., (2009) [66]
established that P. chabaudi malaria parasites are capable
of altering Th2 immune responses and initiation of pul-
monary tissue repair in BALB/c mice co-infected with
Nippostrongylus brasiliensis. This indicates that the pre-
sumption that helminths always alter malaria severity and
immunity is not always correct. Several laboratory experi-
ments have also shown that malaria parasites are capable
of suppressing helminth-associated immunological activa-
tion thereby exacerbating pathological outcomes caused
by the ML [67]. Therefore, this shows that co-infecting
helminths influence the host immunity to mediate im-
mune responses that are beneficial to malaria parasites
during co-infection. However, the underlying patho-
physiological and immunological mechanisms utilised by
co-infecting parasites are not completely understood
despite the findings being extrapolated to explain disease
outcomes in humans. Therefore, it is imperative that con-
siderations are made on non-immunological aspects of in-
fections such as nutrition, immunological status, vector
exposure frequency and population genetics to explain the
conflicting results. Furthermore, the varied immunological
profiles that are elicited by ML stages in various body com-
partments need to be considered when explaining concepts
of immunomodulation. Establishing an animal model for
malaria and tissue-dwelling helminth co-infection is of ut-
most importance, and the use of Trichinella sp. as the
tissue-dwelling helminth is proposed because of its adapt-
ability to laboratory animals as well as its ease of mainten-
ance. For example, studies could be done on the migratory
pathways taken by Trichinella sp. and how the Trichinella
sp. may ameliorate allergic and autoimmune diseases in
mono- and co-infections with malaria [62, 68, 69]. To our
knowledge there are no studies that have been undertaken
to determine the interaction of Trichinella sp. with tropical
infectious diseases. In SSA, although very few human cases
have been reported, trichinellosis is considered as an
emerging/re-emerging zoonotic disease that has been re-
ported to infect a variety of mammals [19, 20, 70]. Onkoba
et al. [71] established that mice co-infected with chronic
T. zimbabwensis ameliorate and supress P. berghei infec-
tion. This is attributable to the comparable levels of inter-
feron gamma (IFN-γ) secreted during co-infection and
correlated with protective immunity [72]. However, further
research is needed to provide new knowledge and insight
into its co-infection with malaria, and the implication on
vaccine efficacy and development of diagnostic tools for
surveillance and control in case of future outbreaks.
Enteric-dwelling protozoa and malaria
Intestinal protozoans, Giardia lamblia and Entamoeba
histolytica have been reported to be major causes of se-
vere intestinal disorder mostly in children, and HIV/
AIDS and immunocompromised patients [73–75]. The
protozoa colonise the intestinal mucosa where they elicit
localised innate immune responses against severe forms
of the disease [76]. The underlying mechanisms for their
unusual migration in the small intestines are still un-
known [77].
Coccidian parasites, Isospora belli, Cryptosporidium sp.

and Cyclospora sp. also cause severe diarrhoea, morbidity
and mortality [78]. Despite this, their actual disease burden
and prevalence are underestimated in developing countries
due to a lack of patient records and sensitive serological as-
says for disease detection [76]. In developing countries,
prevalence of Cryptosporidium parvum infections are in-
creasing due to environmental contaminations by pets,
poultry, domestic animals and infected humans [79–81]. In
literature, these enteric-dwelling protozoan parasites are
only considered as opportunistic infections that are ac-
quired by children, and HIV/AIDS and immunocomprom-
ised patients [82–85]. Their role as potential co-infecting
parasites with tropical infectious diseases such as malaria
has been neglected despite their prevalence in SSA where
malaria is endemic. The risks of potential co-infection of
enteric-dwelling parasites with malaria is possible through
contaminated drinking and recreational water [86, 87], be-
ing in overcrowded households, coming into contact with
infected calves and maintaining poor personal hygiene [82].
Enteric-dwelling parasitic infections lack specific therapy
and vaccines making control of co-infections with malaria
a challenge. Persons co-infected with malaria and enteric
parasites are expected to exhibit severe diarrhoea, wasting
syndrome and reduced quality of life, resulting in a high
morbidity and mortality rate in the young and elderly, as
well as immunocompromised patients. Co-infections are
possible is SSA because susceptible persons live in environ-
ments contaminated with sewage, and also share housing
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with young calves, poultry, cats and dogs that are potential
sources of zoonotic transmissions [81, 88].

Blood and tissue-dwelling protozoan parasites
Transmissions of vector-borne parasitic infections are
on the rise due to changes in climate and global trends,
human behaviour, vector behaviour and prey/host
switching [85, 89]. The complexity of their life cycles,
sophistication in their induction of immune evasion and
intricate host-parasite interactions [90] have complicated
their diagnosis, drug discovery and vaccine development,
as described below:
a) Trypanosomes and malaria: In SSA, the tsetse fly

transmits extracellular protozoan parasites cause debilitat-
ing human African trypanosomiasis (HAT) and nagana in
livestock [91]. The diseases have endemic foci in East,
Southern and West Africa where they share the same geo-
graphical distributions with malaria and STHs, resulting
in co-infections and polyparasitism [92]. Prevalence stud-
ies conducted in Kenya, Uganda, Tanzania and Sudan have
shown that on average 70 % of HAT patients in these
countries are co-infected with malaria and STHs [93–95].
This has made diagnosis and management of HAT diffi-
cult because both malaria and HAT have common clinical
symptoms: intermittent fever, headache, general body
pains, sleep disturbances and coma [96]. Mice concur-
rently infected with P. yoelii or Trypanosoma brucei have
been shown to block resistance to Echinostoma revolutum
parasite infection. [97]. This suggests that a synergistic
interaction exists between protozoan and helminth infec-
tions. However, these studies do not provide explicit infor-
mation on parasite-specific cellular immune and disease
outcomes during these interactions, an indication that
additional studies are needed. Malaria co-infection with
HAT will result in exacerbation of malaria disease out-
come with cerebral involvement. Both parasites potentially
cross the blood brain barrier and the sequester in micro-
vasculature of the brain resulting in cerebral malaria and
eventually coma [91, 94, 98, 99].
b) Babesia sp. and malaria: Due to increased human-

wildlife and livestock-wildlife interactions, a severe re-
crudescence of malaria-like babesiosis in humans and
livestock has been reported [100]. In SSA, the actual
prevalence and distribution of tick-borne diseases have not
been well mapped [101–104]. In humans, Babesia sp. in-
fections might be misdiagnosed as Plasmodium sp. because
of their overlapping similarities in symptoms [105–109].
This setback has compromised diagnosis, treatment, man-
agement of both diseases and possible development of vac-
cines [78, 100, 108, 110]. During babesiosis infection,
the host elicits humoral and cell-mediated immune
responses that are responsible for parasite clearance.
However, immune-evasion has been suspected during
infection [111]. Clark and Jacobson, [112] established
that both Babesia and Plasmodium parasites confer cross-
protection to mice during co-infection. A human case re-
port from Korea showed that Babesia parasites prolonged
severity of malaria-induced haemolytic anaemia during
co-infection [113]. A child from Ivory Coast co-infected
with Plasmodium sp. and Babesia sp. parasites exhibited
markedly enhanced malaria severity [114]. On the other
hand, rhesus macaques with chronic B. microti infection
showed that B. microti parasites were able to suppress P.
cynomolgi infection [115]. Therefore, studies show that
B. microti parasites either provoke induction of im-
mune responses that either ameliorates or exacerbates
malaria infection. However, these few available studies
have not provided enough insight into immunology
and cellular mechanisms that are involved during mono-
and co-infection.
c) Leishmania sp. and malaria: In Sudan and Uganda,

Leishmania donovani complex parasites and malaria have
been reported to co-infect humans. The co-infections
showed a synergistic immunological interaction charac-
terized by enhanced Th1 immune responses [116, 117].
The L. donovani complex parasites naturally colonise
macrophages to initiate counter regulation of host im-
mune responses resulting in a release of anergic/dys-
functional T-cells and blocking of intracellular cytokine
signalling in macrophages and dendritic cells [116]. Cur-
rently, the available information on the interaction of
visceral leishmaniasis and malaria co-infections among
pastoral communities of Kenya, Uganda and Sudan is
limited. It does not provide vital information on disease
outcomes and immunological interactions. Malaria-
infected red blood cells are recognised and internalised
macrophages and dendritic cells that are also colonised
by Leishmania parasites. This shows that during co-
infection the control of malaria will be impaired in that
the effector cells are used by the Leishmania parasites for
immunoregulation. This will result in the exacerbation of
malaria disease and suppression of Leishmania parasites
or, conversely, the parasites will impact the host immunity
and influence infection and pathophysiological responses
of both parasites. The role of Leishmania parasite media-
tors and vector saliva components in mediating immuno-
suppression of host regulatory immune responses are still
unknown [118, 119]. Therefore, further research should
be undertaken to determine disease prevalence and im-
pact on socio-economic and environmental factors in re-
gions where congruency of the two parasites is eminent.
d) Toxoplasma gondii and malaria: Toxoplasma gondii

is a cosmopolitan intracellular apicomplexan parasite
that causes ocular, congenital, neurological and sys-
temic infections in approximately one third of the
world’s population [120–122]. Humans acquire infec-
tion through ingestion of sporulated oocysts and tropho-
zoites in undercooked meat, organ transplants from



Onkoba et al. Infectious Diseases of Poverty  (2015) 4:35 Page 5 of 10
infected donors or through vertical transmission during
pregnancy [123]. Stray dogs and cats feeding on offal at
abattoirs, poor sewerage systems and sanitation standards,
and anthropogenic, climatic and socio-cultural factors
have been implicated in human outbreaks of T. gondii in-
fections [122, 124, 125]. The severity of infection depends
on host immunity and inflammatory foci involved [126].
A questionnaire study conducted in Kenya established
that sources of drinking water and disposal of cat faeces
are infection risks amongst subsistence farmers [127].
However, the protozoan parasite is still regarded as an op-
portunistic agent and not as a causative agent of major in-
fections [84, 128–130]. This implies that toxoplasmosis
and malaria co-infection cannot be ruled out in this
malaria-endemic region. In several mono-infection stud-
ies, it has been established that T. gondii and Plasmodium
parasites utilise similar cellular mechanisms and biochem-
ical pathways for their nutrition, metabolism, pathology
and immunomodulation [131, 132]. This might indicate
that during co-infections the parasites will result in
competitive establishment that may promote or ham-
per parasite pathogenicity, and foetal and birth out-
comes during pregnancy [133], severity of anaemia and
mortality [124, 134–136], and severity of neurological and
cerebral involvement [137, 138, 98]. Malaria and
Toxoplasma parasites sequester in the placenta resulting
in placental disc plate damage thus influencing foetal and
pregnancy outcomes [139]. Despite these prospects of
fatal disease outcomes there is striking paucity of informa-
tion on immunological and disease outcomes and interac-
tions during co-infections with T. gondii.

Lymphatic-dwelling filarial worms and malaria
Lymphatic filariasis (LF) caused by Wuchereria bancrofti,
Brugia malayi, Onchocerca volvulus and Loa loa are en-
demic in SSA [140, 141]. The filarial nematode worms
and Plasmodium parasites are transmitted by the same
anopheline mosquito vector making co-endemicity a
common phenomenon [142, 143] This necessitates im-
plementation of integrated control measures [141]. Sev-
eral studies on chronic LF interactions with malaria have
been conducted [140] and have shown that patent fil-
ariasis is able to modify immunological balance to
confer protection against malaria severity or exacer-
bate it [144–146]. The amelioration malaria severity is
achieved by the combined induction of Th1 and Th2
immune responses with increased interleukin (IL)-5
and IFN-γ production [48, 147, 148]. On the other hand,
pre-patent filariasis exacerbates malaria severity through
immunosuppression of IFN-γ and initiation of activation
of CD4 + CD25 + FoxP3+ T-regulatory cells [145]. In epi-
demiological studies, antihelminthic treatment against LF
has been shown to reduce LF exposure through interrup-
tion of its transmission dynamics [149, 150]. However, in
murine studies, it has been shown to exacerbate malaria
and sepsis [151], thus negating its usefulness in malaria-
endemic areas. On the other hand, Aliota et al. [152]
established that filarial worms are capable of reducing
Plasmodium parasite infectivity within the mosquito vec-
tor. However, these studies have not determined the im-
munological changes that occur during deworming and its
benefits towards integrated control strategies in malaria-
endemic areas.

Taenia solium, Echinococcus granulosus and E.
multilocularis, and malaria
Larval stages of some tapeworms cause fatal liver, brain
and lung metastasis in humans and livestock [153, 154].
In SSA, exposure risks are attributed to changes in hu-
man culinary habits [85, 155] and environmental con-
tamination by stray dogs and cats [127, 156–158]. The
resultant diseases cause physical damage to vital body
organs and tissues, and even lead to neurological and
cerebral damage [159]. Active infection favours induc-
tion of a Th2 skewed immune response characterised by
markedly elevated levels of IL-4 and IL-10 [160, 161]. In
several areas of SSA, tapeworm infections are rare due
to religious and agricultural practices [162]. However,
isolated cases of human infections have been reported in
people working in commercial pig farms [163, 164], or
living in areas where there are no sanitation facilities and
the presence of free roaming pigs [165, 166]. Information
on malaria and cestodes infections is non-existent.
Therefore, further studies are needed to determine the ac-
tual prevalence, disease burdens and even cases of co-
infection with malaria.

Trematodes and malaria
Fasciola hepatica and F. gigantica in humans are emer-
ging infections and occur in malaria endemic areas des-
pite the parasites not being considered to have relevance
in malaria co-infections [167–169]. One of the most im-
portant and common snail-borne trematode infections
in humans is due to Schistosoma haematobium and S.
mansoni, and these are becoming emerging or re-
emerging infections in developing countries of SSA due
to climate changes that are influencing spatial distribu-
tion of fresh water snails [170, 171]. Therefore, the
impact of fascioliasis and schistosomiasis on communi-
ties demand rapid action and research to define control
measures, transmission patterns and epidemiological
situations. There is paucity of data on the interaction of
fascioliasis with malaria except for shared zonal
distributions in Egypt [172]. Thus, research on the inter-
actions between both parasites in their shared eco-
epidemiological settings is required.
Several laboratory experiments and epidemiological

studies have been conducted and meta-analysis reviews
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have been done to determine the host-parasite interac-
tions of malaria and schistosomes during co-infection
[173]. The studies have shown that clinical outcomes of
malaria and immune responses during co-infections with
schistosomes are influenced by age, host genetics, im-
munity and exposure rates in humans [174–181]. In ani-
mal models, immunological responses induced also
depend on the strain of the parasite and patency of the
helminthic infections [182–184]. Research findings show
that schistosomes induce Th2 immune responses that
are either detrimental or beneficial to the host during
co-infection [177, 185, 186]. These findings further show
that schistosomes increase malaria susceptibility and
transmission [187] but have not been able to conclu-
sively explain the underlying mechanism and pathways
for immunomodulation.

Conclusion
There are few studies that are directed towards eluci-
dating the host-parasite interactions and disease out-
comes that are elicited by tissue-dwelling parasites
during co-infection with malaria. This has created a
glaring paucity of data on understanding the mecha-
nisms and outcomes of tissue-dwelling parasites and
mono- and co-infection with malaria. This has also
hampered diagnosis, vaccine development, drug dis-
covery, and management and control of these emer-
ging and re-emerging parasites. Therefore, further
studies are imperative to address this lack of data and
the heterogeneity of results reported during STHs,
schistosomes and filarial worm co-infection with mal-
aria. These future studies should be designed and con-
trolled towards elucidating cellular and molecular
pathways as well as migratory pathways that are uti-
lised by migrating tissue-dwelling helminths and
protozoa. The utilisation of different study designs
and approaches, as well as different tissue-dwelling
helminths and protozoa will provide vital information
that can be extrapolated to humans. These studies and
experiments will also provide information on non-
immunological aspects, timing and order of parasite
infections. The disease outcomes across broad range
of hosts and parasites will show evidence of parasite-
host-parasite interactions at the phenotypic level. This
data will be useful in explaining the actual cellular and
molecular mechanisms and signalling pathways that
influence conferring of protective immunity, exacerba-
tion and/or amelioration of disease outcomes that
have been observed in concomitant and concurrent
infections. In the long term, the studies will provide
the thrust for deworming, surveillance, diagnosis, vac-
cination campaigns and vaccine trials in areas of SSA
where tissue-dwelling parasites are co-endemic with
malaria.
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