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Abstract

Background: Infectious diseases such as SARS and H1N1 can significantly impact people’s lives and cause severe
social and economic damages. Recent outbreaks have stressed the urgency of effective research on the dynamics of
infectious disease spread. However, it is difficult to predict when and where outbreaks may emerge and how
infectious diseases spread because many factors affect their transmission, and some of them may be unknown.

Methods: One feasible means to promptly detect an outbreak and track the progress of disease spread is to
implement surveillance systems in regional or national health and medical centres. The accumulated surveillance
data, including temporal, spatial, clinical, and demographic information can provide valuable information that can be
exploited to better understand and model the dynamics of infectious disease spread. The aim of this work is to
develop and empirically evaluate a stochastic model that allows the investigation of transmission patterns of
infectious diseases in heterogeneous populations.

Results: We test the proposed model on simulation data and apply it to the surveillance data from the 2009 HIN 1

pandemic in Hong Kong. In the simulation experiment, our model achieves high accuracy in parameter estimation (less
than 10.0 % mean absolute percentage error). In terms of the forward prediction of case incidence, the mean absolute
percentage errors are 17.3 % for the simulation experiment and 20.0 % for the experiment on the real surveillance data.

Conclusion: We propose a stochastic model to study the dynamics of infectious disease spread in heterogeneous
populations from temporal-spatial surveillance data. The proposed model is evaluated using both simulated data and
the real data from the 2009 H1N1 epidemic in Hong Kong and achieves acceptable prediction accuracy. We believe
that our model can provide valuable insights for public health authorities to predict the effect of disease spread and

analyse its underlying factors and to guide new control efforts.
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Multilingual abstracts
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Background

Infectious diseases remain a major cause of morbidity
and mortality worldwide, triggering immeasurable loss in
many societies. Most people may still have a fresh mem-
ory of the HIN1 outbreak in 2009, which brought pictures

*Correspondence: xwan@comp.hkbu.edu.hk

3Department of Computer Science & Institute of Theoretical and
Computational Study, Hong Kong Baptist University, Kowloon Tong, Hong
Kong

Full list of author information is available at the end of the article

( BioNed Central

of empty streets and people wearing face masks and col-
lectively caused at least 12799 deaths according to the
World Health Organization (WHO) report [1]. The HIN1
pandemic calls for research on accurately modelling the
spread dynamics of an infectious disease, which offers a
practically useful means for policy makers to evaluate the
potential effects of intervention strategies [2—4].
Mathematical models of the spread of infectious
diseases are an important tool for investigating and
quantifying the spread dynamics because direct experi-
mental study on the spread of disease among humans
is not ethical. Although the subjects involved in differ-
ent epidemics may be different, many can be modeled by
the popular Susceptible-Infected-Recovered (SIR) models
[5-7], which study the spread of infectious diseases by
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tracking the number (S) of people susceptible to the dis-
ease, the number (I) of people infected with the disease,
and the number (R) of people who have recovered from
the disease. Three assumptions are made: (1) the total
population N = S(¢) + 1(¢) + R(¢t) is fixed at any time ¢;
(2) those who have recovered from the disease are forever
immune; and (3) those who have not had the disease are
equally susceptible, and the probability of their contract-
ing the disease at time ¢ is proportional to the product of
S(¢) and I(¢). Based on these assumptions, the SIR model
defines a set of three ordinary differential equations for
S(t), I(t), and R(t):

ds/dt = —BS@®)I(t)
dljdt = BS@)I(t) — kI(t)
dR/dt = kI(t). (1)

Here, 8 > 0 is the effective transmission rate and k >
0 is the recovery rate. Because the SIR-based models are
well presented in the literature, herein, we omit a verbose
introduction of these models. Readers with an interest in
such a topic can find the details in [5-7].

The SIR-based models and its variants have proven to
be quite useful in the study of the spread dynamics of
infectious diseases [8—10]. In [11-13], the progression of
disease spread is characterized by tracking the number of
S; with a chain binomial model. The number of suscep-
tible members Sy ¢ (Af represents the infectious period
of the disease and is always chosen to be 1/k) at time
t + At is a binomial random variable that depends on
8¢ and L, Siypar ~ Bin(Sy, 1 — L), which provides a
recursive relationship between Sy a; and Sy and produces
a formal stochastic process. However, the power of these
models is mainly limited to uniform and homogeneous
populations or populations with infinite size and homo-
geneous interactions. In many cases, the actual spread
of infectious diseases occurs in a diverse or dispersed
population. To study the spread of infectious diseases in
heterogeneous populations, people usually divide a pop-
ulation into subpopulations that differ from each other.
Sub-populations can be determined on the basis of social,
cultural, economic, demographic, and geographic factors.
Next, besides the dynamics of the internal spread within
a subpopulation, the transmission dynamics between sub-
populations should also be considered in the study of
epidemic spreading.

Network-based epidemic modelling represents a pop-
ular approach for heterogeneous populations in which
the nodes in the network correspond to sub-populations,
and the links indicate the neighboring relationships. Many
network-based models have been proposed, including
patch models [14—16], distance-transmission models [17],
and multi-group models [18, 19]. However, these mod-
els require knowledge of every individual (or host) and

Page 2 of 11

all relationships between individuals, which may be not
achievable due to information privacy-related restrictions
and the high cost of subject recruitment. To overcome
the difficulties of collecting data, researchers have inves-
tigated several types of computer-generated networks in
the context of disease spread in population-scale studies
[20—-24]. Grassberger first studied the dynamics of infec-
tious diseases that propagate on regular networks using
the percolation theory [25]. Recent studies have revealed
that many real-world networks, including social networks
in which infectious diseases propagate, are either small-
world [26] or scale-free [27] rather than regular or ran-
dom, as thought previously [28]. Because the underlying
structures of networks will influence the effect that the
dynamics of epidemics will have on them, researchers,
such as Pastor-Satorras and Vespignani, have made many
contributions to critical value analysis of typical epidemics
on different types of complex network [23, 24, 29]. On
the basis of the mean-field theory, they found that com-
pared with homogeneous networks, scale-free networks
are fragile to the invasion of infectious diseases, computer
viruses, or any other type of negative epidemics.

Epidemics have also been studied in various disciplines.
Sociologists are concerned with the diffusion of rumors
or innovation on social networks [30]; economists have
studied viral marketing and recommendation strategies
by considering both cascading dynamics and the net-
work effects of vital nodes [31]; and computer scientists
are interested in how some topics can quickly cas-
cade in virtual blog spaces and how their propagation
trends [32, 33].

Although network-based studies have contributed to
the modelling of disease and/or information dynamics,
some models make a strong assumption that the struc-
tures of underlying networks over which epidemics spread
are known beforehand. In the real world, however, the
structures of underlying diffusion networks are not known
directly. Many others assume the availability of informa-
tion about the interactions occurring between individuals
[34-37] that are often not valid in the context of dis-
ease spread. What may be obtained is only the time at
which particular sub-populations become infected, but
not how they become infected, nor how they affect their
neighboring areas. Moreover, the underlying structures of
networks will greatly influence the dynamics of infectious
disease spread.

Since the emergence of the HIN1 influenza pandemic
in April 2009, its underlying dynamics have been of great
public health interest, and many approaches for its study
have been proposed [14, 38—41]. Most of them are based
on the classic SIR model. For example, Birrell et al. [40]
provided an age structure-based compartmental model
with a Bayesian synthesis of multiple evidence sources to
reveal substantial changes in contact patterns throughout
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the epidemic. Besides of the compartmental models, other
mathematical models are also used to describe the trans-
mission dynamics [3, 42—47]. The chain binomial model
was used to calculate the household secondary attack
rates to measure the transmissibility of the 2009 HIN1
influenza pandemic by Lessler et al. [44] and Klick et al.
[45]. Yang et al. [46] constructed a model based on chains
of infections and used the infection hazard function
and survival function to study the 2009 HIN1 influenza
pandemic. Ferguson et al. [3] and Cauchemez et al.
[42, 43] incorporated other factors, such as household
risk, within-school risk, and community risk, in the study
of infection spread and found out that younger age groups
under 19 years old were more susceptible than older age
groups. Jin et al. [47] formulated an epidemic model of
influenza A based on networks and calculated the basic
reproduction number and studied the effects of vari-
ous immunization schemes. However, this work required
that the individual contact pattern be provided. Nonethe-
less, none of the aforementioned approaches takes spatial
heterogeneity into consideration in the study of disease
spread.

Recently, an outbreak of Ebola virus disease (EVD)
swept across parts of West Africa from March 2014 to
April 2015. By June 10, 2015, WHO had reported 27,237
confirmed, probable, or suspected cases in three coun-
tries with 11,158 deaths [48]. This epidemic received
extensive research attention on its dynamics of spread
[49-57] (for further references in the review article [58]).
To name a few, Chowell et al. found that district-level
Ebola virus disease outbreaks in West Africa follow
polynomial-based growth in time instead of the exponen-
tial growth that describes the progress of many infectious
disease epidemics [52]. Fisman et al. used a simple, two
parameter mathematical model to characterize epidemic
growth patterns in the 2014 Ebola outbreak [53]. Webb
et al. proposed a variant of the classic SIR model with
three extra groups, incubating, contaminated and isolated,
which can provide a more accurate prediction for the
future incidences [56]. Carroll et al. used a deep sequenc-
ing approach to gain insight into the evolution of the
Ebola virus (EBOV) in Guinea from the ongoing West
African outbreak. The viral sequence data can be com-
bined with epidemiological information to retrospectively
test the effectiveness of control measures, and provides an
unprecedented window into the evolution of an ongoing
outbreak of viral haemorrhagic fever [57].

To accurately predict when and where outbreaks will
occur, a feasible means is to deploy manual or electronic
surveillance systems through regional or national pub-
lic health and medical organizations [59]. Most of the
surveillance data accumulated from such systems contains
temporal, spatial, clinical, and demographic information.
For instance, Telehealth Ontario is a teletriage helpline
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that is available free to all Ontario residents, which allows
those with suspected infections to connect with experts
who can assess their symptoms. The records of such calls
provide valuable information on which individual from
where was possibly infected and by which type of dis-
ease at what time. In this paper, we address the problem
of modelling disease spread dynamics in heterogeneous
populations from temporal-spatial surveillance data. We
analyse the role of heterogeneity in a stochastic epidemic
model on a two-dimensional lattice. Within a particu-
lar sub-population, the speed of spread is controlled by
a single parameter, the transmissibility of the pathogen
between individuals. Between sub-populations, the trans-
missibility becomes a random variable drawn from a prob-
ability distribution. Our work differs from existing studies
in some fundamental ways, in light of the unique nature
of infectious disease diffusion dynamics. Our results have
practical implications for the analysis of disease control
strategies in realistic heterogeneous epidemic systems.

Methods

In this work, we propose a stochastic model to study the
dynamics of infectious disease spread in heterogeneous
populations from temporal-spatial surveillance data. We
divide the whole population into m sub-populations on
the basis of geographic regions. In the following, we use
Si(t),1;(t), and R;(t) to denote the number of susceptible,
infected, and recovered people, respectively, at time ¢ in
regioni,i=1,2,--- ,mand t €[0, T].

Stochastic model

Classic SIR-based modelling of infectious diseases
assumes that the population is well-mixed. To take the
role of heterogeneity into consideration, we use an alter-
native approach to model the dynamics of infectious
disease spread. First, the classic SIR model (Eq. (1))
studies the change in the numbers of peoples in the
three groups. In reality, the change in the number of the
infected people is the major concern of society. Second, in
many epidemics or pandemics such as HIN1 and SARS,
the number of infected people [;(¢) is relatively small
compared to the whole subpopulation S;(£). Therefore,
we may consider S;(f) as a constant to simplify the mod-
elling of the change in the number of infected people I(¢),
for which we propose the following stochastic differential
equation:

di(t) = (« + 8ili(¢))dt + 0;dB;(?), 2)

where o is a parameter that measures the auto-recovery
rate of one particular infectious disease, which is usually
considered as a constant among sub-populations, §; is the
parameter that measures the different disease transmissi-
bility in different subpopulations, o; > 0 is the diffusion
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parameter that measures the disease spread from neigh-
bors, and B;(t) is a standard Brownian motion. It is worth
noting that we assume the parameter §; # 0 for techni-
cal purposes, and the results in the case of §; = 0 can be
achieved with §; — 0.

Comparing our model in Eq. (2) with the classic model
in Eq. (1), we can see that they both capture the sit-
uation in which the change in the number of infected
people has a positive relationship with the total number
of infected people, which means that the more infected
people there are, the more people will get infected. There
are two key differences between these two models: first,
the key factor (BS;(£) — k) associated with the disease
spread in Eq. (1) is replaced with a single parameter
8; in Eq. (2), which can be used to analyse the role of
heterogeneity in the disease spread; and second, Eq. (2)
takes the neighboring relationships into consideration to
study the dynamics of the disease spread among different
sub-populations.

By Ito formula, the solution of Eq. (2) is given by

Ii(t) = Ii(O)eait + %(esit —1
o e ). o

Notice that for any fixed ¢, fot e %5dB;(s) is a normal
random variable with

¢
E [/ e‘s"SdBi(s)] =0,
0

t 1— e—25l‘t
Var [/ e‘sisdBi(s):| - (4)
0 25;

Thus, for any fixed ¢, I;(¢) is a normal random variable
with

ELL(0)] = L0 + 5 (¢ — 1) (5)
and
Var[I;(t)] = Ci (ewit - 1) (6)
i 25; .

There are three cases of being interested for parameter
a:

o o > —[;(0)5;
In this case, E[ 1;(¢)] tends to infinity as t goes to
infinity, which implies that all people in that region
will be infected if the time is long enough.

* a=—[(0)
In this case, the pandemic or epidemic will reach a
state of equilibrium.

o o < —[;(0)4;
In this case, E[ [;(t)] will reach 0 at some time ¢ = £
and go to negative infinity as t goes to infinity, which
implies the pandemic or epidemic will end at time .
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Parameter estimation

To estimate the parameters in our proposed stochastic
model from the surveillance data, we need to divide the
interval [0, T] into n subintervals, [ty, 1], [£1,£2], -,
[ti_1,ty], where 0 =t < H1 < tp < --- < t, = T.
Denote At(k) = tiy1 — tx, ABi(k) = Bi(tky1) — Bi(tr),
AL(k) = Ii(tier) — Ii(t), k = 0,1, -+ ,n— 1. Then Eq. (2)
is rewritten as

Ali(k) = (o 4 8ili(t)) At (k) + oi ABi(k). (7)

It is easy to see that AL(K)|(tx) ~ N((Ol +
8:Li(t)) At(k), 02 At(K)). Let 6; = (a,8;,0;). Then the
transition density of the process {I;(¢);t > 0} is

pe; (S + t»y|S) x)
o 2
_ 1 exp{_(y x— (@ + 8x)t) } @

/ 2
2T tO_iZ 2to;

l
Hence, the likelihood function is given by

FOM) & fOlli(t),0 <k <n—1)

o 1 %n—l 1
=10 (=) T o

t k=0
(ALK — (@ + 8ili(tr) At (K))*
P 20t (k)02 ’
9)
Consequently, the log-likelihood function is
log f(6;|1;) —glog o
e ALk — (@ + 8l () At(k)? (10)
5 .
Pt 20t(k)o;
Let
1 n—1
un = = Y Lk, (11)
k=0
1 n—1
up = = ) liltrn), (12)
k=0
1 n—1
ui = — > 17 (%), (13)
k=0
1 n—1
uiny = — ) Jit0li(ter), (14)
k=0
1 n—1
uina = 7 ) L) dt), (15)
k=0
1 n—1
Ui = Y B ok, (16)
k=0
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1 n—1 ~
Uinia = ?Zlﬂtk)(m(k» L (17)
n—1
Uippat = Zl (it (ALKR) Y, (18)
1 ¢ p -1
Uippa-1 = ?Zli (tir) (AE(K)) . (19)
k=0
We have the estimator of 9; as follows:
S\i _ Ui — M — MiZMiIZA + uﬂuim’ (20)
UjIIA — Uja
a = ujp — ujy — Sili1A, (21)
o; = Tn™! {”i22A*1 = 2u90-1 F Ujp1a-1
—(uip — un)? + [(ui2 — un)una
—(uina — uin1)] 8} . (22)

It is obviously to see that @ is not a bona fide estimator
of a, because only the information of {/;(¢);0 <t < T} is
used to estimate . A good estimator should pool all the
information {;(¢);0 < t < T} (i = 1,2,---,m). There
are two ways to find the pool estimator. The first way is to
approximate o by pooling all @; as follows:

m
m Y a,
i=1

Upp — Uil — Silj1A-

a:

(23)

o~

ap =

(24)

But the issue in Eq. (23) is that m must be very large
in order to achieve the accurate estimate of «. In this
work, we choose the second way, which is the maximum
likelihood estimation. To do so, we need to assume that
the processes {[;(£);0 < ¢t < T} (i = 1,2,---,m) are
mutually independent. Then the log-likelihood function
of {[;(£);0<t<T}(i=1,2,---,m)is given by

m
Y logf(all)
i=1
3 i (ALK = @+ BTG AUR0?
1 ko 20t(k)o?
The maximum likelihood estimate is
m
&l - wiair (26)
i=1
where
—~-1
ajz
wj = mn_lAil,]:LZ, ,m (27)
> ‘712
i=1 k=0

«; is defined in Eq. (24).
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Results and discussion
In this section, we illustrate the performance of our pro-
posed model using both simulated and real data.

Simulation study

In the simulation study, we examine the performance
of our proposed model with respect to the accuracy
of parameter estimation and the forward prediction of
the case incidence. First, we generate data using various
parameters by the following steps:

1 Set m = 4 (the number of sub-populations) and
T = 100 (the number of time slots). These two
numbers are randomly selected.

2 Randomly draw « from [0.05,0.09], §; from

[0.02,0.08], and o; from [ 0.02, 0.08].

Initialize ;(0), 1 < i < m.

4 Simulate [;(k+1) = L;(k)+ ALi(k),k=0,1,---
using Eq. (7) and
AL (t) ~ N

w

, T—1

(@ + 8ili(5)) AL(K), 0P AL(K)).

Three parameters, «,d;, and o, in Eq. (2) will be esti-
mated from the simulated data. We conduct 100 replicates
by repeating Step 2—4 and compare the estimated ones,
a, (§i, and &;, with the ground truth values in terms of the
mean absolute percentage error (MAPE) defined as:

100

1 Vi — (v
E, = — %% , (28)
100 = Qj
m—1 100 (S
Es = 2
5= 100 % m Z 275 5 @9
i=0 j=1
1 100 -
“y Ty
= 30
77100 % m (30)

i=0 j=1

The mean absolute percentage errors (MAPEs) for E,,
Es, and E,; are 10.0 %, 6.0 %, and 10.0 %, respectively. We
plot the distribution of the estimated errors for 100 repli-
cates for &,8;, and &; in Fig. 1. From Fig. 1, we can see
that both the estimates of & and &; have small variations.
The variation of the estimate of §; is slightly larger but
is still acceptable and is due to the uncertainty embed-
ded in the stochastic process. We also use the estimated
values of the parameters to generate the data and com-
pare it with the simulated data using the ground truth
values of the parameters. The correlation between them
is 0.96. We randomly select one replicate and show the
comparison results in Fig. 2. Basically, we can use the esti-
mated parameters to accurately recover the ground truth
data.

Next, we conduct an experiment to test the prediction
accuracy of our model. Let us consider a sequence of data
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The performance of parameter estimation

1 +
+ 0.15
¥

0.5 + 0.1
H
b
B 0.05

=

z j

- 1 +

++

0.5

. =

Errors of o estimations

Fig. 1 The performance of parameter estimation. The mean absolute percentage errors for &, §, and o are 10.0, 6.0, and 10.0 %, respectively. o
measures the auto-recovery rate of one particular infectious disease. § measures the disease transmissibility within the population. o measures the

disease transmissibility between populations

Errors of ¢ estimations

Errors of  estimations

points J;;(¢) over a time interval [0, T for the iy, subpopu-
lation in the jy, replicate. We choose a time point s and use
the data points ;[ 0], [;j[ 1], - - - , ;[ s] as the training data
and predict the data points I,l(t) fors <t <T.s=280is
chosen in this experiment. The MAPE of the prediction is
defined as

: b % ta-nla) .,
pre Yy T A
100*20*1’/’1/21 parderd Il £]

The MAPE of the prediction is 17.3 %, which indicates
that our model can achieve around 82.7 % accuracy in
terms of the prediction. Again, we randomly select one
replicate and show the prediction results in Fig. 3.

Real application

In the case study, we apply our model to the surveil-
lance data from the 2009 HIN1 pandemic in Hong Kong.
We acquired the time series data of the daily number of
confirmed HIN1 cases with symptom onset from May
1, 2009 to May 23, 2010. The database includes 36 547
confirmed cases with demographic information on loca-
tion, age, and sex along with the laboratory confirma-
tion dates. The epidemic curve of confirmed H1NI1 cases
(see Fig. 4) reaches its peak at the end of September
2009, after which the intervention procedure comes into
effect and the curve goes down. We use the data up
to September 30, 2009, which comprises 27 898 cases
(more than 2/3 of all cases). Hong Kong is geographi-
cally divided by 18 political areas (districts). Each district
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800
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400

200

Total number of confirmed cases

Time

Zone 3
4000

3000

2000

1000

Total number of confirmed cases

0
0 20 40 60 80

Time
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Fig. 2 The comparison of original data and estimated data for four regions. The x-axis represents the time in days. The y-axis represents the total
number of confirmed cases. The The original data is generated using the ground truth values of parameters while the estimated data is generated
with estimated values of parameters. The correlation between them is 0.96
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Fig. 3 The prediction performance of our method using simulation data for four regions.The x-axis represents the time in days. The y-axis represents
the total number of confirmed cases. The data for the first 80 days are used for training. The data for the last 20 days are used for testing. The mean
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is considered as one sub-population in our proposed
model. The time interval At(k)(k = 0,1,---,n — 1)
of HIN1 is set as 1 day. The total number of days
is 100.

Figure 5 gives the effect of the different components
for the 18 political areas in Hong Kong. From Fig. 5,
we can find that the effect of §, which measures the
internal disease spread within each district, varies less
than the effect of o, which measures the external dis-
ease spread between districts. In general, the speed of

800

700

600 -

500

400 -

300

200

Number of the confirmed H1N1 cases

100

11/2009 01/2010 03/2010 05/2010

Date

052008 072009 0972008
Fig. 4 Daily HIN1 epidemic curve in Hong Kong from May 1, 2009 to
May 23, 2010. The epidemic curve of confirmed HIN1 cases reaches

its peak at the end of September, 2010

internal disease spread is closely connected with the pop-
ulation density and the external disease spread pattern
is associated with the pattern of people’s daily travel.
It is well known that Hong Kong has the highest pop-
ulation density in the world, and most districts are
densely populated. However, it possesses a heavy het-
erogeneous traffic pattern, and there is intensive traf-
fic between districts every day. Therefore, the imported
infections for each district account for a critical fac-
tor in the disease spread, whereas the internal effects
only play a very small role in the progression of disease
spread.

We also use the HIN1 data to test the prediction accu-
racy of our model. The MAPEs for all districts are shown
in Fig. 6 and Table 1. The average prediction error is
20.0 %. We notice that the prediction error for the dis-
trict “TSUEN WAN?” is very high because the number
of daily infections in this district changes suddenly dur-
ing the epidemic period. Figure 7 shows the epidemic
curves of the three regions with the lowest incidence
rate. We can observe that between time slot 34 and
42, there is a sudden rise for the “TSUEN WAN” dis-
trict. Such a change significantly affects the parameter
estimation and thereby the prediction accuracy for the
district “TSUEN WAN” Although the incidence rates of
the other two districts also low, their epidemic curves
are relatively smooth in comparison with that of “TSUEN
WAN’, indicating that the prediction accuracies of these
two districts are higher than that of the “TSUEN WAN”
district.
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progression of disease spread

Fig. 5 The estimation of two factors in disease spread for 18 districts for 2009 HIN1 pandemic in Hong Kong. § measures the transmissibility of
disease spread within each district. o measures the transmissibility of disease spread from the neighbors of each region. This figure shows that the
imported infections for each district account for a critical factor in the disease spread while the internal effects only play a very small role in the

Conclusions

Epidemic modelling offers a practical means for pol-
icy makers to evaluate the potential effects of inter-
vention strategies. To do so, the accuracy of epidemic
modelling with respect to the real-world disease trans-
mission dynamics is essential and remains a challenging
task due to the inaccessibility of many factors that affect
the spread patterns of infectious diseases. In particular,

0.7 T — T — T LB — T — T T
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0.5

0.3

Prediction error
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Fig. 6 The prediction errors for 18 districts using the real HIN1 data.
The mean absolute percentage error is 20.0 %

heterogeneity should be taken into consideration when
modelling the disease spread in non-random mixing pop-
ulations. Many methods have been proposed to deal with
heterogeneity in the study of epidemic dynamics, mostly
using network-based epidemic models in which nodes
correspond to spatial locations with reported incidences
over time, and the directional links indicate the proba-
bility of disease transmission from one node to another
over time. However, it is very challenging to determine
the network topology. Many studies have used a geo-
graphical topology whereas others have used a mobility
network inferred from the public transportation network
or other sources. How to verify the inferred network
topology is another challenging issue because the true epi-
demic network topology is unknown, and it may vary for
different types of infectious diseases for the same popu-
lation. Furthermore, the neighborhood effect estimation
is non-trivial; it involves many parameters (a polynomial
of the number of nodes) and requires a large amount of
data to avoid overfitting. Such data may not always be
available for the inference of network topology. There-
fore, in this work, we propose an alternate approach
to investigate the spatial heterogeneity from temporal-
spatial surveillance data without the inference of network
topology.

Our proposed model possesses several merits over
the previous works. First, it quantifies the role of the
heterogeneity in the analysis of the spread dynamics
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District WAN CHAI KWUN TONG KOWLOON CITY SAI KUNG WONG TAISIN SHATIN

X Error 0.12 0.02 0.15 0.31 0.13 0.14

District TUEN MUN CENTRAL &WEST NORTH KWAITSING EASTER TSUEN WAN
Error 0.09 0.09 0.08 0.30 0.25 0.65

District SOUTHERN SHAM SHUI PO TAIPO YAU TSIM MONG ISLANDS YUEN LONG
Error 0.38 0.06 0.15 0.29 0.08 0.25

The average error of 18 districts is 0.20

of infectious diseases in heterogeneous populations.
Second, parameter estimation can be computed very
quickly. Therefore, the prediction and the correspond-
ing intervention policies can be implemented without
delay in an outbreak of infectious disease. We apply
our model on both the simulated data and the real
data from the 2009 HIN1 epidemic in Hong Kong
and achieve acceptable prediction accuracy. Based on
the study of disease diffusion, the model proposed in
this work can be extended to study other propagation
patterns such as the Internet and World Wide Web,
through which individuals form multiple communities in
which information can propagate in a manner similar
to that of infectious disease. We believe that our work
makes theoretical and empirical contributions in many
areas.

There are some limitations in our proposed stochastic
model. First, it does not consider the epidemic network
topology. However, how to infer such networks is another
challenging task. To the best of our knowledge, the best
way to do so is to use the contact data among some
infected patients to verify the results, but such data are
not always available and can be difficult to collect due to

many issues (e.g., privacy). This issue may be addressed
by using other types of data, such as daily commute data
extracted from social networks. Second, our proposed
model achieves a prediction accuracy of only around 80 %.
We need to further improve it to allow its full use in
real applications. Third, the proposed model is only suit-
able for the situation in which the susceptible population
(or sub-population) maintains a relatively constant size
and structure in a region. However, if the number of
infected people in an epidemic is large or asymptomatic
infection plays a central role (e.g., the malaria epidemic
in Africa), the population factor should be taken into
consideration in the model. Moreover, for a highly spa-
tially heterogeneous outbreak (e.g., the Ebola epidemic) in
which cases may seem to disappear due to reduced trans-
mission in one area while growth may continue or rise
in new locales, our proposed model may have problems
in capturing these opposite dynamics in different regions.
Fourth, because the proposed model is based on the clas-
sic SIR model, it only works in the situation in which the
number of infected people grows exponentially. We will
investigate resolutions to these limitations in our future
work.

50 T T T T

—— WAN CHAI

—— TSUEN WAN
ISLANDS

Daily Infections
N
(S
T

20

thereby the prediction accuracy for the district “TSUEN WAN"

30 35 40 45

Time (one unit for three days)

Fig. 7 The epidemic curve of three districts with the lowest incidence rates. The x-axis represents the time staring from May 1, 2009 to May 23, 2010.
Between time slot 34 and 42, there is a sudden rise for the “TSUEN WAN" district. Such a change significantly affects the parameter estimation and
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