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Abstract 

Background:  Although effective treatment for malaria is now available, approximately half of the global population 
remain at risk of the disease particularly in developing countries. To design effective malaria control strategies there is 
need to understand the pattern of malaria heterogeneity in an area. Therefore, the main objective of this study was to 
explore the spatial and spatio-temporal pattern of malaria cases in Zimbabwe based on malaria data aggregated at 
district level from 2011 to 2016.

Methods:  Geographical information system (GIS) and spatial scan statistic were applied on passive malaria data col-
lected from health facilities and aggregated at district level to detect existence of spatial clusters. The global Moran’s 
I test was used to infer the presence of spatial autocorrelation while the purely spatial retrospective analyses were 
performed to detect the spatial clusters of malaria cases with high rates based on the discrete Poisson model. Further-
more, space-time clusters with high rates were detected through the retrospective space-time analysis based on the 
discrete Poisson model.

Results:  Results showed that there is significant positive spatial autocorrelation in malaria cases in the study area. 
In addition, malaria exhibits spatial heterogeneity as evidenced by the existence of statistically significant (P < 0.05) 
spatial and space-time clusters of malaria in specific geographic regions. The detected primary clusters persisted in 
the eastern region of the study area over the six year study period while the temporal pattern of malaria reflected the 
seasonality of the disease where clusters were detected within particular months of the year.

Conclusions:  Geographic regions characterised by clusters of high rates were identified as malaria high risk areas. 
The results of this study could be useful in prioritizing resource allocation in high-risk areas for malaria control and 
elimination particularly in resource limited settings such as Zimbabwe. The results of this study are also useful to 
guide further investigation into the possible determinants of persistence of high clusters of malaria cases in particular 
geographic regions which is useful in reducing malaria burden in such areas.
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Background
Compared with other human diseases, malaria remains 
one of the most serious public health problem associ-
ated with high morbidity and mortality in most develop-
ing countries [1–3]. In 2018 alone, 228 million malaria 
cases and 405 000 deaths were recorded worldwide with 
the World Health Organisation (WHO) African Region 
contributing 93% of the cases and 94% of the deaths [4]. 
Although malaria has been successfully eradicated in 
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high income and most middle income countries, the dis-
ease remains a major health problem and is a top killer 
infectious disease in low income countries [5]. In most 
parts of Zimbabwe, Plasmodium falciparum is the most 
common and efficient malaria parasite that accounted 
for 99.7% of the estimated cases in 2018 [4] while P. ovale 
and P. malariae account for the remainder. The primary 
vector mosquito species responsible for most malaria 
transmission in Zimbabwe are Anopheles arabiensis and 
Anopheles funestus sensu stricto [6, 7].

In the past few years, malaria incidence and mortal-
ity have declined significantly across the globe [8, 9]. For 
instance, mortality rate decreased by 62% while malaria 
incidence decreased by 41% between 2000 and 2015 [10, 
11]. The decline in malaria incidence and mortality is 
mainly attributed to malaria control interventions such 
as indoor residual spraying (IRS) and use of insecticide 
treated nets [10, 12]. Zimbabwe experienced a substan-
tial decline in malaria cases of up to 81% from 2003 to 
2015 across all age groups [13]. As a result of the sub-
stantial decline in malaria cases in Zimbabwe, the coun-
try adopted the global and regional agenda for malaria 
elimination by 2030 [14]. The target for the country is to 
reduce malaria incidence to 5/1000 by end of 2020 [15]. 
As malaria transmission continue to decline, prevention 
and control interventions will increasingly rely on accu-
rate knowledge of the spatial distribution of high-risk 
geographic areas to support malaria elimination. This 
could be useful in optimal allocation of limited resources 
to ensure that areas with the highest malaria burden are 
given priority [16, 17]. Despite the declining burden of 
malaria, there still exist periodic outbreaks of malaria 
which exhibit spatial heterogeneity across different 
regions through time and space. Mapping malaria spatial 
heterogeneity is important to better understand trans-
mission dynamics [18, 19].

The spatial heterogeneity in malaria transmission has 
resulted in malaria occurring in transmission clusters 
[19, 20]. The spatial heterogeneity in malaria is largely 
attributed to variation in environmental risk factors 
at the macro (e.g., temperature, precipitation) and the 
micro (e.g., local elevation, land use) spatial scales [21]. 
In this case, a malaria cluster is an area characterised by 
unusually high number of cases than expected within a 
population at a particular place at a given time [22]. As 
malaria occurrence exhibit spatial heterogeneity, strate-
gies aimed at reducing or controlling the disease hinge 
upon objective and accurate characterisation of its clus-
ters as a first step towards identifying areas with elevated 
malaria risk for prioritisation of interventions [18, 19]. 
Evidence from previous studies suggest that targeting 
malaria control interventions at high risk areas is cost 
effective and is bound to increase equity compared with 

undirected control [23]. Such targeted interventions 
ultimately reduce malaria mortality and morbidity [24]. 
Focussing malaria control in high risk areas is recom-
mended by WHO in both elimination and post elimina-
tion settings [25].

Although previous studies assessed the spatial and 
temporal variation in malaria occurrence, most of these 
studies lacked the appropriate spatial scale that enables 
optimal planning at the national level [26–29]. In addi-
tion, most of the studies were either based on longitu-
dinal cohort studies or limited in temporal duration [2, 
30]. For example, some studies observed clustering of 
malaria cases at micro-geographic scale such as ward 
level in Gwanda district of Zimbabwe [31]. Similarly, it 
was also established that malaria exhibited spatio-tem-
poral clusters at village level in China [29]. In addition, 
high malaria risk areas were identified in Hubei Province 
of China based on scan statistics [32]. In another study, it 
was found that malaria case distribution is characterised 
by spatial, temporal and spatiotemporal heterogeneity in 
unstable transmission areas in North-west Ethiopia [30]. 
Although these studies provide useful insights in under-
standing the spatial and temporal pattern of malaria, 
knowledge on the spatial and temporal pattern of malaria 
at a level where malaria interventions are commonly 
planned remain patchy. This is despite the fact that spa-
tial analysis becomes much more meaningful when the 
spatial unit at which analysis is performed is representa-
tive of the expected epidemiological dynamics [21]. This 
will then mean the resulting national-level maps from 
such analysis will be justifiably utilized to prioritize high 
risk areas [21].

Despite the fact that effective malaria intervention war-
rants understanding of malaria heterogeneity at larger 
spatial scales for the purposes of resource allocation 
before focussing on microgeographic regions, studies 
at this scale remain largely limited. To fill this gap, this 
study utilised relatively long term malaria case data at 
district level, that is, the spatial epidemiological admin-
istrative unit at which malaria interventions and control 
are planned to determine not only persistent and stable 
clusters but emerging clusters as well [33]. The determi-
nation of spatial pattern of malaria at district level is also 
important in understanding possible interactions among 
neighbouring districts which is fundamental during 
malaria elimination.

To determine the spatial pattern of malaria cluster-
ing, it is important to adopt or even develop methods 
that can reliably and accurately detect malaria clusters 
in space and time. To date, several methods have been 
used to detect spatial and space-time clusters and these 
include, ClusterSeer [34], GeoSurveillance [35], ker-
nel density [36], SaTScan [37] and Flex Scan [38]. The 
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choice of a cluster detection technique can be guided by 
its sensitivity and specificity in addition to the power to 
detect clusters [39, 40]. In this study, SaTscan was applied 
since results from previous studies indicated that it has 
the highest overall sensitivity compared to other meth-
ods such as Local Indicators of Spatial Autocorrelation 
(LISA) and Getis [39] hence its ability to detect true clus-
ters. Moreso, the technique maintains reasonably high 
power for detecting clusters compared to methods such 
as LISA which are influenced by neighbours [41]. Tech-
niques such as Getis-Ord Gi* statistic suffer from multi-
ple testing which is inherently accounted for in SaTscan 
[42]. In this way, SaTscan combines exploratory and con-
firmatory capabilities which enable explicit statistical 
assessment of spatial pattern across the landscape [39].

In this study, the main objective was to test whether 
there is statistically significant spatial and space-time 
clustering of malaria at district level in Zimbabwe. The 
main hypothesis was that malaria tends to occur in clus-
ters and that these clusters have both spatial and tempo-
ral characteristics.

Methods
Study area
The study was carried out in Zimbabwe located in south-
ern Africa between latitudes 15° 30″ and 22° 30″ S and 

longitudes 25° 00″ and 33° 10″ E (Fig. 1). The altitude of 
the study area ranges from 300 to 2590 m above mean sea 
level. Mean annual rainfall ranges from below 400 mm in 
the southern and north-western parts to over 1000 mm 
in the eastern and central parts of the country. The coun-
try records its lowest minimum temperatures in June or 
July while the maximum temperatures occur in October. 
Mean monthly temperatures vary from 15  °C in July to 
24 °C in November, while the mean annual temperature 
varies from 18  °C in the high-altitude areas to 23  °C in 
the low altitude areas. The study area is characterised 
by a subtropical climate with three recognisable sea-
sons which are the hot wet season or summer stretch-
ing from mid-November to March; the cold dry season 
or winter stretching from April to July; and the hot dry 
season or spring from August to mid-November [43]. 
Zimbabwe experiences seasonal and spatial variation in 
malaria transmission that is related to the country’s cli-
mate especially rainfall pattern [13, 44]. The malaria peak 
transmission season in Zimbabwe is between February 
and April [13]. According WHO, there were close to 14 
million people in the country, and four million were at 
risk of malaria with close to 1 million confirmed cases in 
2018. The country is landlocked and shares the border 
with Mozambique, Botswana, Zambia and South Africa 
(Fig. 1).

Fig. 1  Location of the study area
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Data sources
Malaria case data
The positive malaria cases recorded from 2011 to 2016 
were obtained from geocoded health facilities in Zimba-
bwe and aggregated by month and year at district level. 
The country has over 1780 health facilities strategi-
cally placed within a 10-km radius in villages and urban 
areas [13]. The health facilities are ranked into central, 
provincial, and district hospitals, as well as clinics/rural 
health centres (RHCs). Data on malaria incidence at dis-
trict level from 2011 to 2016 were collected based on 
the annual submission from health centres to DHIS 2. 
The data includes province, district, and centre name, 
date of diagnosis, age and gender. The data is for cases 
based on diagnostics using either rapid diagnostic tests 
(RDTs) or microscopy reported in each year [13]. Zim-
babwe, like most developing countries in sub-Saharan 
Africa, adopted the District Health Information System 
(DHIS2) in 2010 to harmonise health data management 
[45]. The malaria cases at district level were plotted using 
ArcGIS 10.3 (ArcGIS Desktop: Release 10. Redlands, CA, 
USA) [46] by month and year to assess the distribution of 
malaria cases in the country.

For the Ministry of Health and Child Care, two main 
sources are used to feed the national surveillance system 
with routine malaria data i.e., the Health Management 
Information System (HMIS) and the Rapid Disease Noti-
fication System (RDNS) [47]. The RDNS, weekly short 
message service (SMS) is used to report malaria cases for 
approximately 95% of the health facilities. In addition, the 
HMIS obtains its data from monthly aggregated malaria 
cases and deaths from all health facilities [47]. In most 
developing countries in sub-Saharan Africa including 
Zimbabwe, routine health information systems are weak 
and there are widespread concerns about the quality and 
utility of malaria data generated from these systems [48, 
49]. Despite concerns about data quality, Zimbabwe has 
made great strides on this aspect through government 
initiatives and international support. To improve data 
quality, the government adopted the Global Technical 
Strategy for Malaria 2016–2030 which stresses the need 
for adequate investment in the management and use of 
data from routine health information systems to support 
programme planning, implementation and evaluation 
[50].

Population data
Population data used in this study were obtained from the 
Zimbabwe National Statistical Agency (ZimStat) based 
on the 2012 National population census [51]. The 2010 
and 2011 population data was based on a 1.1% projected 
growth rate from the 2002 National census [52] while the 

2012 data was based on the 2012 National Census. The 
population for intercensal years for example 2013 to 2015 
were determined using the projected annual growth rate 
of 1.2% based on the 2012 national census [53]. The pop-
ulation of intercensal years is based on projected growth 
rates because the country conducts a population census 
after every 10 years.

Statistical data analysis
Testing for spatial autocorrelation
Moran’s I [54], a global autocorrelation statistic was used 
to detect spatial pattern of malaria in the country. Using 
this technique, significant positive spatial autocorrelation 
of malaria cases imply that the distribution of malaria 
cases is more spatially aggregated than a random under-
lying spatial process.

The Moran’s Index takes the form;

where Zi is the deviation of an attribute for feature i from 
its mean (xi – X̄ ), wi,j is the spatial weight between feature 
i and j, n is equal to the total number of features and So is 
the aggregate of all spatial weights.

Moran’s index ranges from −1 to +1 with a score of 
zero indicating the null hypothesis of no clustering. A 
positive score indicates clustering of malaria cases while 
a negative value shows that neighbouring areas are char-
acterised by dissimilar malaria cases [55]. To perform 
spatial autocorrelation, the Queen Contiguity method 
was applied to define a weight matrix specifying the spa-
tial relationships among the districts of Zimbabwe. This 
method was adopted since malaria is not directionally 
restricted and the districts are highly irregular in shape 
and size [56]. The significance of Moran’s I was assessed 
by employing Monte Carlo randomization where a sta-
tistically significant (Z score > 1.96) indicated that neigh-
bouring districts have similar malaria cases at county 
level.

Detecting malaria clusters using SaTScan
In this study, scan statistics [42] was applied in SaTScan 
v9.6 (https​://www.satsc​an.org/) software to detect high 
cluster rate of malaria. In this case, spatial scan statis-
tic, based on the discrete Poisson model, was applied 
to identify purely spatial clusters of malaria cases by 
year. On the other hand, the space-time scan statis-
tic, based on Space-Time Poisson model was adopted 
to determine the presence of space-time clusters of 
malaria cases by month over the study period. Three 
datasets were prepared for use in SaTScan and these 
were: a case file representing annual malaria cases per 

(1)I =
n

So

∑n
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∑n
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https://www.satscan.org/
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each district (n = 59) from 2011 to 2016; a coordinate 
file representing geographic coordinates of the centroid 
of each district; and a population file representing the 
projected total population for each year from 2011 to 
2016 for the respective district.

The program identified statistically significant retro-
spective clusters based on annual malaria cases aggre-
gated per district in Zimbabwe from 2011 to 2016. 
SaTscan tests whether the number of malaria cases 
within any spatial window exceeds the number expected 
by a random process [57]. To achieve this, the centroid of 
each district was first determined and extracted in a GIS 
environment. The spatial join function in a GIS was then 
used to link the annual malaria cases for each year to the 
centroid of the districts.

Next, the annual malaria cases per district were con-
verted to SaTscan format for use in the detection and 
analysis of clusters. For determining clusters, a cylin-
drical window with a circular geographic base centred 
on each district centroid and with height correspond-
ing to time was applied [57]. The default value of 50% of 
the population at risk was adopted as recommended in 
literature [37, 58, 59]. Thus, clusters with statistical sig-
nificance of P < 0.05 were classified as significant clus-
ters. As previously mentioned, the space-time clusters 
of malaria with high rates were detected using the retro-
spective space-time analysis based on the discrete Pois-
son model. To do this, data was arranged at a monthly 
scale from 2011 to 2016 and hence the time aggregation 
length was set to one month in SaTscan software. The 
space-time scan statistic was defined by a cylindrical win-
dow with a circular geographic base and whose height 
corresponded to a time interval i.e., a month in this case. 
The space-time analysis was applied to detect the sea-
sonal pattern in malaria in the country. This technique is 
more robust as it combines exploratory and confirmatory 
capabilities which enable explicit statistical assessment 
of spatial patterns across the landscape [39] compared to 
Getis-Ord Gi*.To detect significant space-time clusters, 
999 Monte Carlo replications were performed under the 
null hypothesis of random distribution of malaria cases 
[32]. In this case, statistical significance was tested using 
a Poisson generalized log likelihood ratio test based on 
Monte-Carlo inference [32, 60].

The relative risk was calculated by comparing the 
observed number of cases of malaria within each window 
to the expected number, using a Poisson model. The most 
likely cluster (hereinafter, primary cluster) was identi-
fied based on the maximum log likelihood ratio [61]. In 
addition, other clusters with statistically significant log 
likelihood values were defined as secondary clusters. The 
criterion of no geographical overlap was used to report 
secondary clusters.

Cluster frequency analysis
To understand the persistence or emergence of poten-
tial malaria hotspots cluster frequency analysis was 
performed in a GIS environment. Specifically, the clus-
ter frequency analysis was performed through counting 
the number of times a district was detected as part of 
a cluster using overlay analysis. This procedure yielded 
the number of times a district coincided with detected 
clusters whether primary or secondary.

Results
Variation in monthly malaria incidence
Figure  2 illustrates the variation in average monthly 
malaria incidence from 2011 to 2016 in Zimbabwe. 
From 2011 to 2016, a total of 1 877 794 malaria cases 
were recorded throughout the country. It can be 
observed that malaria incidence start to increase from 
December and reach the highest peak in February. In 
contrast, the lowest incidence is recorded during the 
dry months such as August and cold month such as 
July.

Annual incidence of malaria
An analysis of annual malaria cases shows that over the 
6 years, the northern, north-eastern, eastern and south-
eastern districts of the country were characterised by 
high malaria incidence (Fig.  3). In contrast, the west-
ern, central and south western regions had low malaria 
incidence during the same period. In fact, more dis-
tricts in the eastern districts of the country experienced 
high malaria incidence in any other year compared with 
other districts where malaria occurs.

Spatial autocorrelation of malaria cases
Spatial autocorrelation results based on the annual 
malaria cases showed that there was significant over-
all spatial autocorrelation in Zimbabwe across all the 
study years (Table  1). The results demonstrate that 
malaria cases highly cluster at country level for all the 
years under study.

Spatial clusters of malaria from 2011 to 2016
The results for the statistically significant (P < 0.05) 
primary and secondary spatial clusters as well as the 
corresponding relative risk for high rates of malaria 
occurrence identified by purely spatial scan statistic 
based on the discrete Poisson model are illustrated in 
Fig.  4. The results illustrate that there was significant 
spatial clustering of malaria cases in specific districts 
from the years 2011 to 2016 (Fig. 4, Table 2). Over the 
six years, primary clusters of malaria were concen-
trated in the eastern region of the country. The number 
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of districts covered by the primary clusters increased 
from four in 2011 to 12 in 2016. In general, second-
ary clusters are characteristic of the eastern, northern, 
south-western and south-eastern regions of the coun-
try. However, the spatial location and size of these sec-
ondary clusters varied by year (Fig. 4).

Further, results illustrate that the lowest number of 
malaria cases within a cluster was 5414 (2011) while the 
highest was 92 324 (2012). Across all the years under 
study, the most likely clusters had higher than expected 
malaria cases (Table 2).

Frequency of cluster occurrence from 2011 to 2016
The frequency of occurrence of malaria clusters within 
districts based on scan statistics is illustrated in Fig.  5. 
It is observed that districts in the northern, north-east-
ern, eastern and south-eastern regions of the country 
had the highest frequency of malaria clusters. Districts 
at the margins of high malaria cluster districts had low 
frequency of cluster occurrence. In contrast the central, 
western and south western districts had no malaria clus-
ters during the period under consideration.

Space‑time clusters of malaria
Results of space-time Poisson model show four spatial–
temporal malaria clusters that were detected from 2011 
to 2016 (Fig. 6, Table 3). The four statistically significant 

spatio-temporal clusters consisted of one primary clus-
ter and three secondary clusters. The primary cluster 
was located in the north eastern region and covers eight 
administrative districts (Fig. 6).

The primary cluster was detected from the 1st of 
December 2012 to the 31st of May 2014. The primary 
cluster persisted in this region for three seasons and cov-
ered eight districts (Table 3).

Discussion
In this study, Geographic Information System coupled 
with a spatial scan statistical method were success-
fully applied to explore spatial and temporal patterns of 
malaria clusters between 2011 and 2016 at district level 
in Zimbabwe. The results of this study showed signifi-
cant global spatial autocorrelation of malaria cases from 
2011 to 2016 which indicates that the spatial distribu-
tion of malaria followed a clustered pattern. The results 
confirm findings from previous studies that observed the 
tendency of malaria to cluster in particular geographic 
regions mostly derived by the spatial heterogeneity in 
the factors that drive transmission of the disease [20, 
31]. Based on previous studies, the spatial heterogeneity 
in malaria is largely attributed to variation in environ-
mental risk factors at the macro (e.g., temperature, pre-
cipitation) and the micro (e.g., local elevation, land use) 
spatial scales [21]. From the observed detected pattern, 

Fig. 2  Average monthly malaria incidence from 2011 to 2016
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the variation in malaria cases coincide with the distribu-
tion of the preferred habitat of the Anopheles mosquitoes 
which are the main vectors that transmit P. falciparum 

parasite [21]. Thus, our study further provides evidence 
of spatial heterogeneity in the occurrence of malaria in 
the affected regions.

Fig. 3  Spatial distribution of annual malaria incidence for a 2011, b 2012, c 2013, d 2014, e 2015 and f 2016
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Results of purely spatial analysis based on the pois-
son model showed that primary and secondary clusters 
of malaria persisted in the northern, north-eastern, 
eastern and south-eastern districts of Zimbabwe. The 
results show that consistently over the study period, 
malaria clusters occur in different sizes and at different 
locations. This is important in identifying stable cluster 
areas which persist in areas of high malaria burden [20]. 
The results support the hypothesis that malaria cases 
tend to significantly cluster within certain geographic 
units albeit with observable shifts over time. This may 
indicate that the occurrence of malaria in Zimbabwe is 
characterised by spatial heterogeneity as high-risk areas 
still exist particularly in the north north-east, east and 
south eastern districts of the country [31]. The high risk 
areas detected in this study are consistent with malaria 
hotspots detected through Getis Gi* statistic analysis 
and were closely related to high vector habitat suit-
ability [2]. In addition, the high risk areas coincide with 
the high and perennial malaria risk zones delineated 
through malaria risk stratification in Zimbabwe [62]. 
As the country moves towards malaria elimination [13], 
there is need to prioritise control efforts by focussing 
on high risk areas as these are possible reservoirs of 
malaria transmission [63]. The detection of statistically 
significant malaria clusters is a critical step towards 
spatial targeting and selection of appropriate popula-
tion level interventions as these clusters are potential 
reservoirs for future infection [20, 27]. Through the 
detection of clusters, affected countries can shift from 
malaria control to malaria elimination which is one of 
the key goals of the WHO Global Technical Strategy 
for Malaria 2016–2030 [14]. The targeting of high risk 
areas for malaria control aligns with the United Nations 
Sustainable Development Goal (SDG) number three 
which is seeks to promote good health and well-being 
through scaling up of malaria interventions [4, 64].

Results of space-time analysis showed that malaria 
clusters tend to occur in particular months e.g. Decem-
ber to May. The fact that most clusters were detected 

during this period is not surprising as the country 
receives most of its rainfall between December and 
March which dissipates towards April and May [13]. 
The high amount of rainfall coupled with relatively high 
temperatures during this period provides optimal con-
ditions for mosquito breeding and subsequent malaria 
transmission [13]. Previous studies have shown that 
this period coincides with the malaria epidemic season 
in Zimbabwe and offers favourable climatic conditions 
in high risk months for malaria transmission [7, 13, 44]. 
When combined with location specific information on 
malaria clustering, results of space-time clustering fur-
ther points to the importance of incorporating these 
two aspects in order to fully understand malaria trans-
mission dynamics. Such insights would not have been 
generated had the study only adopted either purely spa-
tial or purely temporal approach in modelling cluster-
ing of malaria. The results of space-time analysis can 
then be utilised to plan timing of control interventions 
by targeting those months where clusters are common. 
This would require deviation from the usual practice 
where indoor residual spraying is done well before the 
malaria season.

What makes this study different from other previous 
studies is that, unlike previous studies, this study used 
malaria case data for a relatively long period (six years) 
which provides important insights in the persistence of 
clusters (stable clusters) in certain geographic regions. 
In addition, this study integrated space and time in one 
analytical framework which provides new insights into 
the evolution of malaria not only in the spatial but also in 
the temporal domain. This study utilised one of the most 
robust methods of cluster detection to understand the 
pattern of malaria clusters unlike previous studies which 
have mostly utilised hotspot analysis techniques such the 
Getis Gi* statistic [2]. The technique used in this study 
has both high specificity and sensitivity hence provides a 
balance in terms of committing at type 1 or type 2 errors. 
Furthermore, the high risk areas identified in this study 
may serve as important starting points for future dis-
ease surveillance in resource limited environments such 
as Zimbabwe. Apart from providing disease surveillance 
targets, such high risk areas could be prioritised during 
resource allocation to achieve effective disease control. 
However, further research should be focussed in these 
areas to fully understand disease etiology and local fac-
tors that support elevated malaria risk.

Data quality related to use of retrospective data may 
have affected the results of this study. Most develop-
ing countries are characterised by incomplete reporting 
of routine data, non-reporting, missing data and poor 
data aggregation frameworks [65]. Nonetheless, malaria 
case-management and data quality have greatly improved 

Table 1  Spatial autocorrelation test on  malaria cases 
from 2011 to 2016

Year Moran’s index Z score P-value

2011 0.53 20.00 0.00

2012 0.56 21.45 0.00

2013 0.41 15.67 0.00

2014 0.45 17.27 0.00

2015 0.57 21.48 0.00

2016 0.25 112.09 0.00
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Fig. 4  Spatial distribution of malaria clusters detected by purely spatial for a 2011, b 2012, c 2013, d 2014, e 2015 and f 2016. (The primary cluster is 
illustrated by a darker outline)
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particularly parasitological testing as well as the adoption 
of electronic databases such as DHIS2. Although routine 
data from health facilities is known to underestimate 
malaria burden due to the above mentioned factors, the 
data is still useful in understanding the spatial distribu-
tion of malaria in endemic regions [66, 67]. Thus, the 
results of this study provide an important basis for plan-
ning and implementation of malaria control strategies.

Although spatial and spatio-temporal clusters of 
malaria were successfully detected using data from 2011 
to 2016, one limitation is that the malaria cases used in 
this study did not differentiate local and imported cases. 
It is important to differentiate local and imported malaria 
cases particularly given the observation that most of the 
high rates of malaria clusters tend to be concentrated 
along borderline areas [68, 69]. The challenge is that 
a greater part of the borders of the country are porous 
making it difficult to monitor movement. For example, to 
the east Zimbabwe shares a 730 km border with Mozam-
bique which is also known to have high malaria cases 
while to the south-east the country borders with South 
Africa along the Limpopo valley (a malaria endemic 
region) [70–72] and to the North it borders with Zambia 

[73, 74]. Imported cases could have influenced the size 
and location of high rates of malaria clusters detected 
in this study. Migration related malaria remains a major 
problem for Zimbabwe especially in the eastern parts of 
the country. The occurrence of malaria due to migration 
could be as a result of locals travelling to neighbouring 
Mozambique during the day and contracting malaria 
which is then reported in eastern districts. Addition-
ally, populations from neighbouring country may access 
treatment in Zimbabwe’s eastern districts where the 
treatment is free to patients. Usually these cases are not 
reported in the DHIS2 database despite receiving treat-
ment. The use of genomic surveillance may address the 
first challenge of locals contracting malaria from the 
neighbouring country. Introducing a data point recording 
non-resident malaria patients would allow an accurate 
characterisation of the burden of malaria in the eastern 
border districts. There is therefore need for national data 
collection systems to incorporate imported cases in their 
systems. To achieve this, there is need for closer collabo-
ration with neighbouring countries.

The information generated in this study could be 
important in strengthening cross border collaboration 

Table 2  Significant malaria clusters detected using the purely spatial clustering

A primary cluster, B secondary, RR relative risk; LLR log likelihood ratio

Year Cluster type Cluster areas 
(n)

Observed Expected RR Radius(km) LLR P-value

A 3 48 569 9569 6.38 74 44 198 0.00

B 6 58 222 22 305 3.27 126 23 850 0.00

2011 B 2 13 937 4520 3.24 55 6 506 0.00

B 7 47 530 36 405 1.40 152 1 937 0.00

B 2 5414 5015 1.08 32 16 0.00

A 3 92 324 17 148 6.94 74 89 397 0.00

B 2 74 241 22 710 3.88 60 40 668 0.00

2012 B 5 44 030 25 085 1.86 73 6 386 0.00

B 3 42 155 28 805 1.53 113 2 982 0.00

B 5 34 236 31 941 1.08 122 89 0.00

A 12 247 572 108 723 3.78 152 97 033 0.00

2013 B 2 41 339 10 382 4.28 74 27 258 0.00

B 3 52 771 37 524 1.46 113 3 026 0.00

A 3 52 868 12 087 5.28 74 40 965 0.00

B 4 36 004 14 553 2.72 69 12 175 0.00

2014 B 2 16 088 5243 3.21 55 7 438 0.00

B 3 17 509 14 423 1.23 69 329 0.00

A 1 28 145 5788 5.47 114 23 439 0.00

2015 B 2 13 261 5885 2.34 74 3 533 0.00

A 12 211 251 88 565 3.88 152 88 392 0.00

B 2 79 698 23 800 3.92 60 44 713 0.00

2016 B 3 77 507 30 514 2.90 113 28 321 0.00

B 2 31 355 12 709 2.59 74 10 118 0.00
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Fig. 5  Frequency of cluster occurrence from 2011 to 2016

Fig. 6  Spatial distribution of detected space-time clusters of malaria from 2011 to 2016
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given that the country has joined other Southern Afri-
can countries to achieve malaria elimination [13, 73]. 
This will be achieved through alliances such as Elimina-
tion8 (E8) comprising Angola, Botswana, Mozambique, 
Namibia, South Africa Swaziland, Zambia and Zimba-
bwe. Closer collaboration in malaria elimination could 
be achieved through the ZAMZIM (Zambia and Zimba-
bwe), and the MOZAZI (Mozambique, Zambia and Zim-
babwe), and the MOZIZA (Mozambique, Zimbabwe and 
South Africa) initiatives [3, 13, 73].

Nevertheless, insights generated in this study are use-
ful in guiding further research on tightening cross border 
migration to malaria transmission and strengthening col-
laboration among neighbouring countries in the control 
of malaria. This is because without collaboration, malaria 
elimination is bound to fail as malaria occurrence due the 
influence of imported cases. Another potential limitation 
of the study is that although Kulldorff’s scan statistic has 
been successfully used to detect circular clusters, it does 
not have the same success rate when detecting irregu-
lar clusters [75]. Despite these potential limitations, the 
results of this study are still important and may be useful 
for planning disease surveillance, particularly in areas of 
limited resources by focussing on high risk areas.

Conclusions
This study explored whether there is spatial heterogene-
ity in the distribution of malaria, one of the diseases of 
global public health concern. This was achieved through 
the detection of spatial and space-time clusters using 
scan statistics. The results indicated that high risk areas 
for malaria are concentrated in the northern, eastern, 
and south-eastern part of the country. The results of this 
study could be used to design malaria control strategies 
aimed at reducing malaria incidence in high risk areas 
particularly those along border areas. In addition, the 
results could be used to guide optimal resource alloca-
tion by giving priority to the regions in greatest need. The 
results of this study highlight the spatial heterogeneity in 
malaria occurrence with several high-risk areas detected 
across the country. Based on this retrospective study, sig-
nificant attention need to be directed to high risk areas 
as these may act as reservoirs for the current and future 

malaria occurrence. The study is helpful in prioritiz-
ing resource allocation in high-risk areas for effective 
disease control. Although results are based on histori-
cal data, they are useful in tracking progress the country 
has made in reducing malaria incidence. In addition, the 
results can be used as a baseline to evaluate the impacts 
of malaria programmes implemented during this period 
which is important in informing current and future con-
trol strategies.
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