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Abstract 

Background:  The new waves of COVID-19 outbreaks caused by the SARS-CoV-2 Omicron variant are developing 
rapidly and getting out of control around the world, especially in highly populated regions. The healthcare capacity 
(especially the testing resources, vaccination coverage, and hospital capacity) is becoming extremely insufficient as 
the demand will far exceed the supply. To address this time-critical issue, we need to answer a key question: How can 
we effectively infer the daily transmission risks in different districts using machine learning methods and thus lay out the cor-
responding resource prioritization strategies, so as to alleviate the impact of the Omicron outbreaks?

Methods:  We propose a computational method for future risk mapping and optimal resource allocation based 
on the quantitative characterization of spatiotemporal transmission patterns of the Omicron variant. We collect the 
publicly available data from the official website of the Hong Kong Special Administrative Region (HKSAR) Govern-
ment and the study period in this paper is from December 27, 2021 to July 17, 2022 (including a period for future 
prediction). First, we construct the spatiotemporal transmission intensity matrices across different districts based on 
infection case records. With the constructed cross-district transmission matrices, we forecast the future risks of various 
locations daily by means of the Gaussian process. Finally, we develop a transmission-guided resource prioritization 
strategy that enables effective control of Omicron outbreaks under limited capacity.

Results:  We conduct a comprehensive investigation of risk mapping and resource allocation in Hong Kong, China. 
The maps of the district-level transmission risks clearly demonstrate the irregular and spatiotemporal varying patterns 
of the risks, making it difficult for the public health authority to foresee the outbreaks and plan the responses accord-
ingly. With the guidance of the inferred transmission risks, the developed prioritization strategy enables the optimal 
testing resource allocation for integrative case management (including case detection, quarantine, and further treat-
ment), i.e., with the 300,000 testing capacity per day; it could reduce the infection peak by 87.1% compared with the 
population-based allocation strategy (case number reduces from 20,860 to 2689) and by 24.2% compared with the 
case-based strategy (case number reduces from 3547 to 2689), significantly alleviating the burden of the healthcare 
system.

Conclusions:  Computationally characterizing spatiotemporal transmission patterns allows for the effective risk 
mapping and resource prioritization; such adaptive strategies are of critical importance in achieving timely outbreak 
control under insufficient capacity. The proposed method can help guide public-health responses not only to the 

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

*Correspondence:  jiming@comp.hkbu.edu.hk
†Jinfu Ren and Mutong Liu contributed equally to this work
Department of Computer Science, Hong Kong Baptist University, 
Kowloon, Hong Kong Special Administrative Region, People’s Republic 
of China

http://orcid.org/0000-0002-0166-3944
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40249-022-00957-1&domain=pdf


Page 2 of 11Ren et al. Infectious Diseases of Poverty           (2022) 11:34 

Background
The emergence of the SARS-CoV-2 Omicron variant 
(B.1.1.529) posts an unprecedented challenge to the con-
trol and prevention of the pandemic of COVID-19 [1–4]. 
Studies show that the Omicron variant is four times as 
transmissible as the Delta variant [5–7], and it is now 
dominating the transmission in the current pandemic. 
The healthcare system is now suffering from a tremen-
dous pressure of the capacity shortage (especially the 
shortage in testing resources, vaccination coverage, and 
hospital capacity) due to the extremely strong transmissi-
bility of the Omicron variant [8], especially in the densely 
populated regions [9, 10]. Take Hong Kong of China, a 
metropolis with a total population size of 7.5 million and 
a population density of 7140 per square kilometre, as 
an example. The current daily testing capacity in Hong 
Kong, China is far less than 300,000 [11, 12]. Compared 
with the total population, such a capacity is obvious 
insufficient for detecting the infected cases and contain-
ing the disease transmission, especially when it is not 
optimally directed to the communities with the highest 
risk or the greatest need [13, 14].

To optimally allocate the healthcare resources to miti-
gate the spread of the epidemic, especially when the 
resources are limited, a critical question therefore needs 
to be answered: How can we effectively infer the daily 
transmission risks in different districts using machine 
learning methods and thus lay out the corresponding 
resource prioritization strategies, so as to alleviate the 
impact of the Omicron outbreaks? To answer this ques-
tion, we must address two technical challenges:

(1)	 How can we foresee the future risks of the Omicron 
outbreaks in different locations?

(2)	 How can we allocate the limited healthcare 
resources based on the future risks to reduce the 
impact of the outbreak?

To address these two challenging issues, in this study, 
we propose a computational method for future risk map-
ping and optimal resource allocation based on the quan-
titative characterization of spatiotemporal transmission 
patterns of the Omicron variant. As shown in existing 
studies, spatiotemporal transmission patterns of the virus 
play a key role in uncovering the dynamism of the disease 

spread and outbreaks [15–18], and thus should be taken 
into account when investigating the disease transmis-
sion risks and strategizing the corresponding interven-
tions. Specifically, we design our method as follows. First, 
we construct the spatiotemporal transmission matrices 
across different districts based on the publicly available 
records of confirmed cases, which contains the visiting 
history of each case. With the constructed cross-district 
transmission matrices, we then forecast the future risks 
of various locations daily by means of the Gaussian pro-
cess. Finally, we develop a transmission-guided resource 
prioritization strategy that enables effective control of 
Omicron outbreaks under limited capacity.

We validate the effectiveness of the proposed method 
in forecasting the risks and prioritizing the resources 
through a comprehensive investigation in Hong Kong, 
China. The maps of district-level transmission risks show 
clear spatiotemporal heterogeneity, providing key infor-
mation to resource allocation. With the guidance of the 
inferred transmission risks, the developed prioritization 
strategy enables the effective and flexible testing resource 
allocation with different levels of capacity insufficiency. 
As shown in this study, the quantitative characterization 
of the spatiotemporal transmission patterns of the disease 
enables us to gain the insights into the dynamism and 
heterogeneity of the outbreaks as well as the implementa-
tion and optimization of the prioritized resource alloca-
tion strategies. This is not only of critical importance in 
preventing the Omicron outbreaks in Hong Kong, China, 
but also informative in guiding the responses to the 
potential future outbreaks caused by other new variants 
and/or in other highly populated countries and regions 
under serious capacity shortage.

Methods
Data sources and collection
We develop the method and conduct the investigation 
based on the information of reported COVID-19 cases in 
Hong Kong, China, covering all 18 districts from March 
17, 2020 to February 5, 2022. The data are owned and 
publicly released by the Department of Health, Hong 
Kong Special Administrative Region (HKSAR) Govern-
ment [19]. For each confirmed case, we use the indi-
vidual’s onset date, report date, and the buildings that 

Omicron outbreaks but also to the potential future outbreaks caused by other new variants. Moreover, the investiga-
tion conducted in Hong Kong, China provides useful suggestions on how to achieve effective disease control with 
insufficient capacity in other highly populated countries and regions.
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the individual visited during the 14 days before the date 
of case confirmation to construct the spatiotemporal 
transmission matrices. We identify the location of the 
buildings (i.e., their latitudes and longitudes) using the 
building names from the Google Geocoding API. We fur-
ther use the constituency area shape file, which contains 
the latitudes and longitudes of the boundary of constitu-
ency areas to identify the constituency areas that have 
been visited by the confirmed cases.

Construction of spatiotemporal transmission matrices
We construct each disease transmission matrix (daily) 
across 18 districts in Hong Kong, China as follows. First, 
we build the daily transmission matrix at the constitu-
ency area level. Specifically, for each confirmed case, if 
they have visited a series of locations (i.e., buildings) in 
the same day, we construct a link between any two build-
ing i and j, and the direction of the link is from i to j if 
the building i appeared before the building j in the case-
visited building list provided by the government. We take 
the difference between the day of visit and the symptom 
onset day (in terms of the number of days) as the input 
of the infectiousness profile [20] to get the transmission 
risk from i to j, which is introduced by the connection 
between these two buildings. We then identify the cor-
responding constituency area that each building belongs 
to, and accumulate the building-to-building transmission 
risks to form the transmission matrix at the constituency 
area level. Based on the 452 × 452 constituency-level 
matrix (since there are 452 constituency areas in Hong 
Kong, China), we further construct the 18 × 18 district-
level transmission matrix by summating the elements in 
the corresponding district block. For example, D5 (the 
district of Yau Tsim Mong) has 20 constituency areas 
while D8 (the district of Wong Tai Sin) has 25 constitu-
ency areas. As a result, the transmission risk from D5 to 
D8 will be the summation of all elements in the corre-
sponding 20 × 25 block. Note that for each day there will 
be a corresponding transmission matrix across districts. 
Please refer to the Additional file 1 for more details of the 
construction of spatiotemporal transmission matrices.

District‑level risk mapping
Based on the constructed daily  transmission matrix, we 
infer the daily transmission risks of different districts as 
follows. First, we define the daily transmission risk of 
each district as its transmissibility not only to itself but 
also to the remaining 17 districts. Therefore, we can 
obtain such risk of a specific district by summating all ele-
ments of the corresponding row in the constructed trans-
mission matrix, in which the (i, j)-th element denotes the 
transmission risk from the i-th district to the j-th district. 
By doing so, we can obtain a series of daily transmission 

risks for each district in a given period. Then we infer 
the transmission risks of different districts by adopting 
the Gaussian process regression model [21, 22], which is 
a representative machine learning model for time series 
prediction with uncertainty. We use the historical data to 
train the model and then use the trained model to predict 
the future transmission risks of all districts. Please refer 
to the Additional file 1 for more details of the procedure 
of district-level risk inference.

Transmission‑guided resource allocation
To optimally direct resources to the communities with 
the greatest needs, we develop a transmission-guided 
strategy, which prioritizes different districts for testing 
resource allocation according to their population size, 
number of infections, and more importantly, the trans-
mission risk. Note that the testing discussed in this study 
is not an isolated action but an integrative case manage-
ment process, including testing for detection, quaran-
tine, and further treatment. Therefore, in our study, we 
consider that the infected individuals detected by the 
testing will be immediately quarantined and thus can-
not further infect other susceptible individuals. To vali-
date the effectiveness of our strategy, we further develop 
a compartmental model at the meta-population level 
called Susceptible-Detected-Nondetected-Recovered 
(SDNR) model to simulate the future trend of the disease 
transmission. The structure of proposed SDNR model 
is shown in Fig. 1. In each district, the proposed SDNR 
model divides the compartment of infectious popula-
tion into two sub-groups: detected infections and non-
detected infections, which are decided by the allocation 

Fig. 1  The structure of the proposed SDNR compartmental model
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rate of resources and the infection rate. The 18 individual 
compartmental models (one for each district) are inte-
grated in our SDNR model using the constructed trans-
mission matrices across 18 districts. Please refer to the 
Additional file  1 for more details of the transmission-
guided resource allocation.

Results
Results of the transmission matrix construction
We construct the daily spatiotemporal transmission 
matrices in Hong Kong, China during December 27, 
2021 to February 5, 2022, which is corresponding to the 
current wave of Omicron outbreak in Hong Kong, China. 
Figure 2 illustrates several examples of the transmission 
networks reflected by the constructed matrices. The cor-
respondence between the district code and the district 
name is provided in the bottom right corner of the figure 
as well as Table  S1  of the Additional file  1. The bottom 
maps in subfigures (A) and (C) demonstrate the number 
of reported cases in different districts on January 20, 2022 
and January 31, 2022, respectively. The network above 
the corresponding map visualizes the constructed daily 
transmission matrix across different districts in the same 
day. In the network, each node denotes the correspond-
ing district below it, connected by the dotted line, and 
the color of the links indicates the transmission intensity 
from one district to another. The elements’ values of the 
constructed transmission matrices on January 20, 2022 
and January 31, 2022 are provided in  Tables S2 and S3 
of the Additional file 1, respectively. Figure 2B shows the 
transmission networks in other three different days dur-
ing the period of January 20, 2022–January 31, 2022.

From the figure we can observe that edges in the same 
transmission network (i.e., the same day) show obvi-
ous difference in their intensities, indicating the spatial 
heterogeneity of the transmission patterns. Moreover, 
the networks are time-varying, even for two close dates, 
demonstrating the temporal heterogeneity of the trans-
mission patterns. Such complex spatiotemporal hetero-
geneity determines the dynamics of the transmission and 
makes the outbreaks difficult to forecast. By quantita-
tively characterizing such spatiotemporal transmission 
patterns, our method can uncover the underlying dyna-
mism of the disease, and thus enables the risk mapping 

and resource allocation, which will be shown in the fol-
lowing two subsections.

Results of risk mapping of districts
Figure 3 illustrates the transmission risks of all 18 admin-
istrative districts in Hong Kong, China from January 30, 
2022 to February 05, 2022, which are inferred from the 
Gaussian process model. Detailed results of inferred risk 
mapping and complete ranking results of the transmis-
sion risks of these districts are provided in Tables S5 and 
S6 of the Additional file 1, respectively.

Similar to the spatiotemporal heterogeneity of the 
transmission networks observed in Fig. 2, the transmis-
sion risks in different districts also demonstrate obvious 
heterogeneity in both spatial and temporal dimensions, 
which can be seen in Fig.  3. From January 30, 2022 to 
February 05, 2022, the district with the highest transmis-
sion risk has changed five times in just one week (D8: 
Wong Tai Sin on January 30, 2022, D10: Tsuen Wan on 
January 31, 2022 and February 1, 2022, D17: Kwai Tsing 
on February 2, 2022, D12: Yuen Long on February 3, 
2022, D7: Kowloon City on February 4, 2022, and D11: 
Tuen Mun on February 5, 2022). This result demonstrates 
the highly dynamic patterns of the disease transmission 
risks, implying that purely relying on passively tracing 
the historical cases might be less effective for outbreak 
control, especially in such a densely populated and highly 
dynamic environment.

Another interesting observation is that the districts 
with more cases may not necessarily indicate the higher 
transmission risks, and vice versa. For example, on Feb-
ruary 2, 2022, the top-3 districts with the highest trans-
mission risks are D17 (Kwai Tsing), D16 (Shatin), and 
D8 (Wong Tai Sin). In the same day, however, the top-3 
districts with the largest number of cases are D2 (Wan 
Chai), D3 (Eastern), and D6 (Sham Shui Po), which are 
totally different from the districts with the highest risks. 
This observation indicates that the number of detected 
cases might not be the golden criterion to quantify the 
risks. To provide a more effective characterization, the 
spatiotemporal transmission patterns should also be 
taken into consideration, so as to enable the early warn-
ing of potential outbreaks and the response planning in 
advance.

Fig. 2  The case maps and the constructed spatiotemporal transmission networks on (A) January 20, 2022, (B) January 22, 2022, January 25, 
2022, and January 28, 2022, and (C) January 31, 2022 in Hong Kong, China. The red map at the bottom of (A) and (C) denotes the case map of 
the corresponding day. The intensity of the red color indicates the number of the cases. The darker the color on the map, the more cases in 
the corresponding district. The networks in the blue/green color shown in (B) and at the top of (A) and (C) are the spatiotemporal transmission 
networks constructed from the case visiting history. The blue color indicates the high transmission intensity while the green color indicates the low 
intensity. The correspondence between the district code and the district name is provided in the bottom right corner of the figure

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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Scenario analyses of transmission‑guided resource 
allocation
To validate the effectiveness of the transmission-guided 
strategy for allocating resources, we conduct a series 
of simulations with different levels of testing resource 
capacity: 300,000, 500,000 and, 700,000 per day, respec-
tively, which are consistent with the current capacity in 
Hong Kong or expected to be achieved in the near future 

with the support from the mainland of China [12]. As 
mentioned previously, testing here indicates an inte-
grative case management including testing for detec-
tion, quarantine, and further treatment. That is to say, 
the cases detected by the test will be quarantined and 
treated, and thus will not further infect other people. 
We consider four scenarios with different resource allo-
cation strategies: (1) Baseline: no specific strategies will 

Fig. 3  The out-going transmission risk maps of 18 districts in Hong Kong, China from (A) January 30, 2022 to (G) February 5, 2022. The intensity 
of the blue color indicates the transmission risk level. The darker the color on the map, the higher the risk of the corresponding district. The 
correspondence between the district code and the district name is provided in the bottom right corner of the figure

(See figure on next page.)
Fig. 4  The simulation of the trend of Omicron outbreak (in terms of the daily case number) in Hong Kong, China from December 30, 2021 
to July 2022. We assume that the 300,000 testing capacity per day will be available from February 14, 2022. (A) Four scenarios with various 
resource allocation strategies: the baseline (yellow curve), population-based strategy (orange curve), case-based strategy (red curve), and 
our transmission-guided strategy (blue curve). (B) The detailed comparison between the case-based strategy (red curve) and the proposed 
transmission-guided strategy (blue curve). (C) The details of the daily infection trend with our transmission-guided resource allocation. The thicker 
solid curve denotes the number of daily new infections; the thinner solid curve denotes the total number of infected individuals in each day, 
including both the newly infected ones and the previously infected but not recovered individuals; the dash line denotes the number of detected 
cases; and the dotted line denotes the number of non-detected cases
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Fig. 4  (See legend on previous page.)
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be adopted; (2) Allocating the testing resources accord-
ing to the population size of each district (population-
based strategy): this is somewhat similar to the strategy 
to be adopted by the HKSAR Government in March, i.e., 
arranging the testing in the order of the year of birth [23]; 
(3) Allocating the resources according to the number of 
confirmed cases detected from each district (case-based 
strategy); (4) Allocating the resources according to our 
transmission-guided prioritization strategy, i.e., taking 
into account the population size, the detected case num-
ber of each district, and more importantly, the transmis-
sion risk that this district could bring to others.

Figure 4A, B shows the simulation results of the afore-
mentioned four scenarios with the capacity of 300,000 
testing per day. The simulation starts from December 
30, 2021 and it lasts for 200  days. The blue bars show 
the number of daily confirmed cases with a 7-day mov-
ing average effect from December 27, 2021 to February 
11, 2022. In our scenario analyses, we start allocating the 
testing resources from February 14, 2022. The four solid 
curves with different colors denote the simulation results 
on the number of daily new infections under the afore-
mentioned four scenarios in the coming 5 months. Please 
refer to the Additional file 1 for more details of simula-
tion settings.

Compared to the scenarios with the baseline and the 
population-based strategy (the yellow curve and the 
orange curve in Fig.  4A, B), our transmission-guided 
strategy largely flattens the peak of outbreaks in terms 
of the number of daily new infections. Specifically, com-
pared with the population-based strategy, the proposed 
transmission-guided strategy can reduce the infection 
peak by 87.1% (case number reduces from 20 860 to 
2689), which can be observed from Fig.  4A. Even com-
pared with the case-based strategy, as enlarged and illus-
trated in Fig.  4B, our transmission-guided strategy can 
further reduce the infection peak by 24.2% (case number 
reduces from 3547 to 2689), demonstrating the efficacy 
of the developed resource allocation strategy in alleviat-
ing the burden of the healthcare system. The reduction 
percentages of the peaking infections by using trans-
mission-guided allocation strategy compared with other 
three allocation strategies for all three testing capacity 
scenarios: 300,000, 500,000, and 700,000 tests per day are 
provided in Table S4 of the Additional file 1.

We show more details of our transmission-guided 
strategy with the 300,000 testing capacity in Fig.  4C. 
The thicker solid curve denotes the number of daily 
new infections, which is the same as the blue solid curve 
in Fig.  4A, B. The thinner solid curve denotes the total 

Fig. 4  continued
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Fig. 5  The simulation of the trend of Omicron outbreak (in terms of the daily case number) in Hong Kong, China from December 30, 2021 to July 
17, 2022. We assume that (A) 500,000 and (B) 700,000 testing capacity per day will be available from February 14, 2022



Page 10 of 11Ren et al. Infectious Diseases of Poverty           (2022) 11:34 

number of infected individuals in each day, includ-
ing both the newly infected ones and the previously 
infected but not recovered individuals. As explained in 
the Methods Section, we further divide the total number 
of infected individuals into two sub-groups: the detected 
infections and non-detected infections, which are shown 
by the dash line and the dotted line, respectively. From 
Fig.  4C, we can observe that the number of detected 
infections will increase rapidly at the beginning. The pos-
sible reason is that the appropriately allocated resources 
make the identification of infections effective, and thus 
more cases can be detected via the testing. After a few 
days, this number and the number of total infections 
(daily) start to decrease, indicating the effectiveness of 
the developed strategy in controlling the disease spread. 
However, due to the insufficiency of the testing resources 
in making a comprehensive testing, some non-detected 
cases will continue infecting other individuals, resulting 
in the second round of the case number increasing and 
peaking.

In addition to the simulation with the testing capacity 
of 300,000 per day, we also demonstrate the simulation 
results with the testing capacity of 500,000 and 700,000 in 
Fig. 5A and B, respectively. With more testing resources 
available, the infection peak can be further flattened, and 
the outbreak can be alleviated in a more effective way: 
with both the increased capacity and our transmission-
guided resource allocation strategy, the number of daily 
new infections can be reduced sharply, i.e., from around 
2500 to around 300, in less than 5  days. Moreover, the 
height of the second peak with the 500,000/700,000 
capacity will be much lower than that with the 300,000 
testing capacity, and the epidemic (in terms of the num-
ber of daily new infections) can be quickly under control, 
with the effective resource prioritization.

Discussion
The scenario analyses demonstrate that the proposed 
resource allocation strategy is more effective in alle-
viating the disease spread than the population-based 
and case number-based allocation strategies, indicat-
ing the necessity and importance of incorporating the 
spatiotemporal transmission patterns of disease in fore-
seeing the outbreak risk and allocating the healthcare 
resources, especially in densely populated regions. The 
results also imply that only an effective resource alloca-
tion strategy might not be sufficient to control the out-
breaks, especially when the capacity is extremely limited. 
With more capacity available, our resource prioritization 
strategy will be more powerful in containing the disease 
transmission.

Note that in our method, we emphasize the spatiotem-
poral transmission because the disease spread is mainly 
caused by the human mobility across districts over time. 
This makes the transmission intensity and risk varying 
over time, in a daily basis. Moreover, we define the daily 
transmission risk of each district as its overall transmis-
sion potential to all 18 districts (including itself ). This 
means that we calculate the risk of each district by sum-
mating the out-going transmissibility from this district 
to others, rather the in-coming transmissibility received 
from other districts. By doing so, we expect to make 
the characterized risk more foreseeing, i.e., enabling the 
quantification that how will this district’s risk impact the 
disease transmission in other districts. This is consist-
ent with our primary goal of actively seeing the future 
dynamics of the outbreak and effectively planning for dis-
ease control.

The computational method developed in this study is 
general and can also be used in guiding public-health 
responses to the potential future outbreaks caused by 
other new variants in Hong Kong, China as well as in 
other densely populated countries and regions. However, 
when applying the developed method to other countries 
or regions with similar requirements (i.e., how to effec-
tively allocate limited resources for disease control), we 
need to adaptively implement the country/region-spe-
cific settings (e.g., the spatial and/or temporal resolutions 
of data and model, the ways of constructing spatiotem-
poral transmission matrices from the individual case 
information, and the levels of healthcare capacity), rather 
than directly using the numerical results obtained in this 
paper.

Conclusions
In this study, we develop a resource allocation strategy 
for prioritizing limited healthcare capacity based on 
the computational characterization of spatiotemporal 
patterns of the disease transmission risks. Compared 
with the population-based and case-based strategies, 
the developed strategy foresees the out-going trans-
mission risks of different districts in a more active 
way, thus enabling the planning of resource prioritiza-
tion ahead, which is of critical importance in achiev-
ing timely outbreak control under insufficient capacity. 
Through the comprehensive investigation of risk map-
ping and resource allocation in Hong Kong, China, we 
gain the insights into the dynamism and heterogeneity 
of the outbreaks of Omicron as well as the implementa-
tion and optimization of the prioritized resource allo-
cation strategies. As a general approach, the proposed 
transmission-guided strategy can help guide public-
health responses not only to the Omicron outbreaks 
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but also to the potential future outbreaks caused by 
other new variants. Moreover, the investigation con-
ducted in Hong Kong, China provides useful sugges-
tions on how to achieve effective disease control with 
insufficient capacity in other highly populated coun-
tries and regions.
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