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Abstract 

Background:  The coronavirus disease 2019 (COVID-19) epidemic, considered as the worst global public health 
event in nearly a century, has severely affected more than 200 countries and regions around the world. To effectively 
prevent and control the epidemic, researchers have widely employed dynamic models to predict and simulate the 
epidemic’s development, understand the spread rule, evaluate the effects of intervention measures, inform vaccina-
tion strategies, and assist in the formulation of prevention and control measures. In this review, we aimed to sort out 
the compartmental structures used in COVID-19 dynamic models and provide reference for the dynamic modeling 
for COVID-19 and other infectious diseases in the future.

Main text:  A scoping review on the compartmental structures used in modeling COVID-19 was conducted. In this 
scoping review, 241 research articles published before May 14, 2021 were analyzed to better understand the model 
types and compartmental structures used in modeling COVID-19. Three types of dynamics models were analyzed: 
compartment models expanded based on susceptible-exposed-infected-recovered (SEIR) model, meta-population 
models, and agent-based models. The expanded compartments based on SEIR model are mainly according to the 
COVID-19 transmission characteristics, public health interventions, and age structure. The meta-population models 
and the agent-based models, as a trade-off for more complex model structures, basic susceptible-exposed-infected-
recovered or simply expanded compartmental structures were generally adopted.

Conclusion:  There has been a great deal of models to understand the spread of COVID-19, and to help preven-
tion and control strategies. Researchers build compartments according to actual situation, research objectives and 
complexity of models used. As the COVID-19 epidemic remains uncertain and poses a major challenge to humans, 
researchers still need dynamic models as the main tool to predict dynamics, evaluate intervention effects, and provide 
scientific evidence for the development of prevention and control strategies. The compartmental structures reviewed 
in this study provide guidance for future modeling for COVID-19, and also offer recommendations for the dynamic 
modeling of other infectious diseases.
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Background
After emerging in late 2019, the coronavirus disease 
2019 (COVID-19) pandemic has affected more than 200 
countries and territories, with more than 507.5 million 

confirmed cases and over 6.22 million deaths reported 
globally as of April 25, 2022 [1]. The speed, scope, and 
difficulty of prevention and control of the epidemic are 
unprecedented. It was declared a “global pandemic” by 
the World Health Organization (WHO) on March 11, 
2020 [2]. The pandemic has not only posed a serious 
threat to human health but has also had profound  con-
sequences on society, economy, environment, public 
psychology, and so on [3]. In the early stages, as a newly 

Open Access

*Correspondence:  epistat@gmail.com

2 Department of Epidemiology and Health Statistics, Fudan University, 
Shanghai 200032, China
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-5172-2896
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40249-022-01001-y&domain=pdf


Page 2 of 9Kong et al. Infectious Diseases of Poverty           (2022) 11:72 

emerging infectious disease, the epidemiological char-
acteristics, transmission mechanisms, and clinical fea-
tures of COVID-19 were not clear. At this time, due to 
the ability to combine expert advice and the limited data 
needed, dynamic models are being widely used to predict 
the dynamic trends, intensity, and temporal and spatial 
dynamic processes of the epidemic and to evaluate the 
potential impact and effectiveness of candidate preven-
tion and control measures. Therefore, this has played an 
important role in allocating medical and health resources 
reasonably, determining effective prevention and control 
measures, and formulating strategies for the resump-
tion of work and production in the early stages of the 
epidemic.

After almost two years of COVID-19, the scientific 
community has more in-depth research and a greater 
understanding of its epidemiology, characteristics, clini-
cal manifestations, and other aspects. Due to the distinct 
incubation period of COVID-19, early studies using the 
susceptible-infected-recovered (SIR) model and its exten-
sion may be inaccurate, while the susceptible-exposed-
infected-recovered (SEIR) model and its extension are 
more appropriate. As the characteristics of the COVID-
19 epidemic have been revealed, and various non-phar-
maceutical interventions (NPIs) have been applied, the 
compartmental structures of COVID-19 dynamic models 
have become increasingly rich and complex to reflect the 
true transmission dynamics of the epidemic to the great-
est extent. A reasonable compartmental structure is criti-
cal for dynamic modeling; therefore, it is vital to review 
the compartmental structures of the COVID-19 dynamic 
models.

In this review, we analyzed the compartmental struc-
tures used in COVID-19 dynamic models, including the 
SEIR-based expanded models, meta-population models, 
and agent-based models, hoping to provide an important 
reference for the dynamic modeling for COVID-19 and 
other infectious diseases in the future.

Methods
Database searches
To conduct the search, we entered “COVID-19” in 
the title field, and “dynamics model” related fields 
in the abstract field. The search strategy was as fol-
lows: (COVID-19 + Novel Coronavirus + 2019-
nCOV + nCOV-19 + SARS-CoV-2) * (SIR + SEIR + SI
RQ + SEIRQ + "the reproductive number" + "stochas-
tic model" + " deterministic model" + "compartment 
model" + "dynamics model" + "mathematical model" + "mech-
anism model" + "meta-population model" + "agent-based 
model" + "individual model" + "epidemic model" + "simu-
lation model").

The searches, conducted on May 14, 2021, yielded 4499 
records across PubMed, ScienceDirect, and Web of Sci-
ence, and 405 records (in Chinese) across CNKI and 
Wanfang Database [4, 5].

Record screening
The inclusion criteria were as follows: (1) the litera-
ture language was either English or Chinese; (2) focus 
on COVID-19; (3) the compartmental structures of the 
dynamic model were described in detail; (4) literature 
with high reference value determined by internal expert 
discussion (mainly for papers in Chinese, based on the 
core journals of Peking University). The exclusion crite-
ria were as follows: (1) repeated articles; (2) no dynamic 
model was established, SIR or its extension, or only a 
basic SEIR model was used; (3) full text unavailable. 
According to the above criteria, 234 English and 7 Chi-
nese references were included in this review. The screen-
ing process is represented in Fig. 1.

Results
Due to incubation period of COVID-19, the SEIR model 
should theoretically be used as the basis to construct 
compartment models. Focusing on the compartmental 
structures used, this review analyzed the expanded com-
partment models based on the SEIR model, meta-popu-
lation models, and agent-based models.

Expanded models based on SEIR
The main reasons to expand the compartments of the 
SEIR model include the following (Fig. 2):

(1)	 the COVID-19 characteristics, such as asympto-
matically infected, death, further subdividing the 
infected compartment by disease status, etc.

(2)	 public health interventions, such as hospitalization, 
isolation, quarantine, etc.

(3)	 age structure.
(4)	 integrating the above reasons.

Expand compartments according to COVID‑19 
characteristics
Understanding the transmission mechanism and viral 
characteristics of COVID-19 is critical to control its 
spread. COVID-19 is primarily transmitted from per-
son to person through respiratory droplets released 
when someone with COVID-19 sneezes, coughs, or 
talks. People can also be infected by touching objects 
contaminated with live viruses or by touching mucous 
membranes, such as the mouth, nose, and eyes after 
exposure to a contaminated environment [6]. Infected 
cases can be divided into symptomatic patients and 
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asymptomatic patients according to the presence 
or absence of clinical symptoms; the symptomatic 
patients can be further divided into mild patients, 
severe patients, and critically ill patients (ICU patients), 
according to the severity of their symptoms. There-
fore, to model the transmission dynamics, researchers 
expanded the compartments according to these divi-
sions [7–9]. A proportion of those infected died, and 
the death rate of severe patients was higher than that 
of mild patients [10]. Thus, the death compartment (D) 
is included in some models. In addition, some studies 
added a compartment to account for the possible trans-
mission to people via the live virus in contaminated 
environments [11–13]. A summary of the expanded 
compartments according to virus characteristics is pre-
sented in Table  1 (complete compartmental structures 
and meaning are shown in Additional file 1).

Fig. 1  Literature search process, including inclusion and exclusion criteria for articles screen

Fig. 2  Main reasons to expand the compartments of the SEIR model
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Expand compartments according to public health 
interventions
Before the COVID-19 vaccination became available, 
countries worldwide adopted various NPIs, including 
border closure, active contact tracing, testing for isolating 
cases, quarantining suspected cases, wearing face masks, 
social distancing, school and/or workplace closure, travel 
restrictions, etc., in an effort to mitigate and contain the 
transmission. To simulate the true transmission dynam-
ics of COVID-19 to the greatest extent and to assess the 
effects of different NPIs, researchers added compart-
ments reflecting NPIs. These NPIs can be divided into 
the following two categories according to the target pop-
ulation of interventions:

(1)	 Protect the susceptible population. The measures 
include restricting the activities of the susceptible 
population in medium- and high-risk areas [20, 
21]; changing behaviors of the susceptible popula-
tion through propaganda and education on epi-
demic prevention and control [22–24], requiring or 
encouraging people to wear face masks, maintain 
social distancing, wash hands frequently, reduce 
gatherings, and so on. These measures were meant 
to reduce the risk of exposure to COVID-19.

(2)	 Track and isolate infected or suspected infected 
individuals and close contacts. The measures 
include isolating and hospitalizing infected indi-
viduals [25] and quarantining close contacts and 
suspected cases [26]. These measures can effectively 
reduce contact between the infectious and suscepti-
ble population, thereby reducing transmission rates. 
Considering these measures, researchers added 
corresponding isolation, quarantine, and hospi-
talization compartments based upon a basic SEIR 
model. The isolation compartments can be subdi-
vided according to close contacts, suspected cases, 

and different types of infected persons. Hospitalized 
patients have been further subdivided according to 
their severity of symptoms, as indicated below.

In addition to the above two categories of NPIs, active 
nucleic acid testing and timely reporting of cases [27] 
were also important prevention and control measures. 
On the one hand, testing for close contacts, sub-close 
contacts (close contacts of close contacts), and sus-
pected cases, testing for all people in high-risk areas, and 
testing for people out from high-risk areas can detect 
infected cases and take quarantine or other measures to 
stop the transmission; on the other hand, notification of 
confirmed cases and their travel paths can also improve 
the self-protective consciousness of the susceptible pop-
ulation and therefore reduce the risk of infection.

The expanded compartments reflecting public health 
interventions are presented in Table  2 (see Additional 
file  2 for the complete structures and meaning of the 
compartments).

Expanded compartments based on age structure
Some studies considered the heterogeneity of the popu-
lation, such as different contact rates among people, 
infection rates for different individuals, the protection 
awareness of people with different occupations and at 
different ages, and different development processes of the 
disease due to different physical fitness levels after infec-
tion. Additionally, the vaccination has certain regulations 
and priorities for different ages.

Table  3 summarizes age groups and compartmental 
structures in the model in relation to age structure. Addi-
tional file 3 indicates the complete compartmental struc-
tures and age groups.

Integrating virus characteristics and interventions
More studies have considered both virus characteristics 
and intervention measures when constructing dynamic 
models, including subdividing compartments into more 
detailed levels according to whether the individual has 
been inspected [37], discovered [38], and reported [39]. 
These compartmental structures reflect better the actual 
situation of intervention. For example, some studies have 
modeled intervention measures for patients with dif-
ferent infection status, which were common in reality: 
isolating asymptomatic infections at home, admitting 
symptomatic infections to hospital [40], and admitting 
severe patients to ICU for treatment [41], etc. The recov-
ered individuals were also divided into different compart-
ments according to whether they had been detected or 
not, symptomatic or asymptomatic [37]. With the suc-
cessful development of COVID-19 vaccination, research-
ers added the vaccination compartment to evaluate its 

Table 1  Summary of the expanded compartments according to 
virus characteristics of COVID-19

a Subclinical infected: infected persons with mild or no symptoms; clinical 
infected: infected persons with obvious symptoms.

Expanded 
compartments

Interpretation References

A Asymptomatic [14]

Im, Is Mild (Im)/ severe (Is) symptom [7]

Ic Critical [9]

Ip, Ic, Is Preclinical (Ip), clinical (Ic), subclini-
cal infection (Is)

a
[15]

P Pre-symptomatic [16]

D Dead [17–19]

B Live virus in environment [11]
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effectiveness and to develop immunization programs 
[42]. The expanded compartments are shown in Table 4 
(see Additional file 4 for the complete structures).

Meta‑population model
Meta-population models contain several subpopulations, 
each of them representing a spatial area from a country 
or a city, to a school or a family, to investigate interac-
tions and movements among different subpopulations. 
A whole compartmental structure was conducted in 
each subpopulation to distinguish different populations 
and the movement of people among different subpopu-
lations interacting with the whole population. There-
fore, the meta-population models can be regarded as a 

combination of classic compartment models with net-
work models. The compartments of the former have been 
analyzed above, and the latter is related to network analy-
sis, with a relatively simple structure. The key to meta-
population models lies in how to accurately describe the 
network to reflect reality and therefore to describe the 
movements of individuals among subpopulations, as well 
as their influence on the entire population.

By considering the contact heterogeneity and move-
ments among subpopulations, meta-population models 
partially overcome the shortcomings of homogeneous 
mixing that traditional compartment models have typi-
cally assumed. They can also analyze the spatiotempo-
ral dynamic process of infectious diseases on a relatively 

Table 2  Expanded compartments based on public health interventions

a Protected, confined, and behavior changed susceptible people are less likely to be infected than ordinary susceptible people

Intervention Expanded 
compartments

Interpretation References

Categorize the susceptible Sp Protected susceptiblea [20]

Sc Confined susceptiblea [21]

Sr Behavior changed susceptiblea [24]

M, U Masked/unmasked humans [23]

Hospitalization/quarantine H Hospitalized infected [25]

Q Quarantine [28]

Sq, Eq Quarantined susceptible (Sq), quarantined exposed (Eq) [26]

Active nucleic acid testing and notifi-
cation of confirmed cases

M Missed cases [29]

Q1, Q2 Suspected population under home quarantine (Q1), medical quarantine 
population of confirmed cases (Q2)

[30]

Ir, Iu Tested infected individuals (Ir), non-tested infected individuals (Iu) [27]

I1, I2 Infectious people with timely diagnosis(I1), delayed diagnosis (I2) [31]

Table 3  Age groups and compartmental structures of dynamic models considering age structure

Age group, years Compartmental structures Interpretation References

0–15, 15–29, 30–59, 59 +  Si,Ei,Ai,Mi,Hi,Ci,Ri Susceptible (Si), exposed (Ei), asymptomatic (Ai), mild (Mi), severe (Hi), 
critical (Ci), recovered (Ri) in age group i

[32]

0–9, 10–19, …, 70–79, 80 +  SiEiAiIiHiRiDi Susceptible (Si), latently infected (Ei), asymptomatic infectious (Ai), infec-
tious individuals with symptoms/clinically ill (Ii), hospitalized patients 
(Hi), recovered (Ri), death due to disease (Di) in group i

[33]

0–14, 15–49, 50–69, 70–80, 80 +  SiEiLiIiRiTpiAsiSsiSviCriRdiDi Susceptible (Si), exposed (Ei), post latency (Li), infectious (Ii), undocu-
mented recovered (Ri), tested positive (Tpi), asymptomatic (Asi), sympto-
matic (Ssi), severe (Svi), critical (Cri), dead (Di), documented recovered (Rdi) 
in age group i

[34]

0–14, 15–49, 50–69, 70 +  SijEijIijQijHijRijDij Susceptible (Sij), exposed (Eij), presymptomatic (Ipij), mild to moderate 
(Imij), severe (Isij), quarantined and exposed (QEij), pre-symptomatic and 
isolated (QIpij), mild to moderate and isolated (QImij), severe and isolated 
(QIsij), isolated (Qij), admitted to hospital (Hij), pre-ICU (PICUij), ICU (HICUij), 
recovered (Rij), dead (Dij) in age group I and health status j

[35]

0–10, 10–20, …, 60–70, 70 +  SiViEiEviAiAviIiQiRiRviDi Susceptible (Si), vaccinated (Vi), exposed (Ei), exposed and vaccinated 
(EVi), asymptomatic (Ai), asymptomatic and vaccinated (AVi), sympto-
matic (Ii), isolated (Qi), recovered (Ri), recovered and vaccinated (RVi), 
death (Di) in age group i

[36]
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large spatial scale. Readers interested in this can refer to 
relevant studies [49].

Most of the compartmental structures of current meta-
population models for COVID-19 were relatively simple. 
For example, Chang et al. established a SEIR meta-popu-
lation model to identify high-risk areas of disease trans-
mission and evaluated the potential influence of local 
travel restrictions in Taiwan, China with the population 
flow data [50]. Chan et al. employed a SEIR meta-popu-
lation model combined with a dynamic mobile network 
to describe the prevalence of COVID-19 in 10 major cit-
ies of the United States [51]. Chinazzi et  al. established 
a global SEIR meta-population model based on air flight 
networks to analyze the impact of travel restrictions on 
the spread of COVID-19 [52]. This type of model gen-
erally has a simple compartmental structure and can 
be found in previous summaries; we will not list them 
separately.

Agent‑based model
Traditional compartment models typically assume that 
the population were homogeneously mixing, as do the 
subpopulations in meta-population models; therefore, 
they cannot describe the heterogeneity between indi-
viduals. Agent-based models (ABMs) are simulation 
models in which entities (referred to as agents) interact 

with each other, considering the individual’s demo-
graphics, social environment, and natural environment. 
ABMs consist of a series of interaction rules to make 
agents regularly move between different places; there-
fore, they can simulate the real spatiotemporal spread 
of infectious diseases optimally in small-scale spaces 
from a microscopic level, and they can provide scien-
tific evidence for the implementation of precise preven-
tion and control. Therefore, ABMs can be regarded as 
an integration of dynamic models and interaction rules. 
Considering the complex interactions between indi-
viduals in a heterogeneous population, Hoertel et  al. 
established a stochastic agent-based microsimulation 
model to examine the potential impact of post-lock-
down measures in France [53]; Aleta et al. used mobil-
ity and demographic data in the Boston metropolitan 
area to build a detailed agent-based model, demonstrat-
ing the importance of testing and tracing in the context 
of relaxed social distancing [54]. However, ABMs need 
detailed data and heavy computation, especially with a 
large number of agents and complex rules; the results 
were influenced greatly by initial values and interac-
tion rules. Therefore, in the published ABM-related 
research, the compartmental structures were relatively 
simple and not as complicated as the expanded com-
partments summarized above (Some compartmental 

Table 4  Expanded compartments that considered both virus characteristics and interventions

a Unsusceptible: a susceptible person can become unsusceptible due to factors such as the use of facemasks, hand washing, and SD (social distance)
b Susceptible persons removed from isolation (ST): isolated susceptible individuals, after a period, are released from isolation and transferred to compartment ST
c Primarily infected: individuals that remain infectious within the reported duration of the infectious period after the incubation period; chronically infected: 
individuals that are less infectious but remain infectious and may be diagnosed for a longer duration

Interventions Expansion compartments Interpretation References

Social distancing, wearing masks, 
washing hands, etc

U Unsusceptible a(U) [43]

Quarantined at home/hospitalization ST Susceptible persons removed from isolation b(ST) [44]

I2 Infectious after receiving ineffective treatment (I2) [45]

Q, D Home quarantined individuals (Q), diagnosed individuals who are 
being treated and isolated (D)

[46]

Ia, Is, Qa, Qs, Ru, Ra, Rs Undetected asymptomatic infectious (Ia), undetected sympto-
matic infectious (Is), detected and quarantined asymptomatic (Qa), 
detected and quarantined symptomatic (Qs), undetected recovered 
asymptomatic (Ru), recovered detected asymptomatic (Ra), recov-
ered detected symptomatic (Rs)

[37]

W1, R1, D1, W2, R2, D2 Hospitalized that never require an intensive care
bed (W1), recovered from non-ICU (R1), deaths from non-ICU (D1), 
hospitalized that require an intensive care
bed (W2), recovered from ICU (R2), deaths from ICU (D2)

[41]

H1, H2 Confirmed cases who are quarantined at home (H1), confirmed 
cases who are hospitalized (H2)

[40]

Ip, Ic Primarily infected (Ip), chronically infected (Ic)c [47]

Vaccination, testing or contact tracing AC Contact traced asymptomatic (AC) [48]

Eu, Ed Undetected exposed (Eu), detected exposed (Ed) [38]

Su, Sv Unvaccinated susceptible (Su), vaccinated susceptible (Sv) [42]
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structures applied by ABM were shown in Additional 
file 5).

Discussion
Dynamic models are important tools in the study of 
infectious disease. By constructing compartments 
according to infection states and related interventions 
and simulating transformation among different compart-
ments, they reflect the transmission process of diseases. 
The models can predict the development trends of the 
diseases and reflect the potential transmission process 
and evaluate the effectiveness of various intervention 
measures; therefore, they play a key role in creating pre-
vention and control measures. Establishing appropriate 
compartmental structures is the basis and premise of 
making dynamic models work. We divided the dynam-
ics models of COVID-19 into three categories, expanded 
compartment models based on SEIR model, meta-popu-
lation models, and ABMs and review their compartmen-
tal structures accordingly, hoping to provide a reference 
for modeling COVID-19 in different scenarios and pro-
vide scientific guidance for modeling research on other 
diseases.

After reviewing current COVID-19 modeling studies, 
we found that the SEIR-based expanded models consider 
the latent period of the virus and expand the compart-
ments according to the infection status and measures, 
such as tracking, diagnosis, and isolation. With the nor-
malization of epidemic prevention and control, methods 
to reflect the intensity and time of various intervention 
measures in the model are still worthy to study. All the 
three types of models have their own characteristics and 
application scope, with different requirements for data. 
Traditional compartmental models generally assume 
homogeneous mixing of people, which is not realistic in 
the real world. However, they are simple in mathemati-
cal form, easy to analyze, low data requirements, and 
easy to apply. Meta-population models take popula-
tion movements into account, therefore, are suitable for 
studying the spread of infectious diseases between differ-
ent countries/regions. ABMs integrated heterogeneity of 
agents, make them be available for building more realistic 
models and provide accurate support for making deci-
sions about the prevention and control of infectious dis-
eases. These two latter types of models are more in line 
with real world, while need more parameters and com-
plex rules of individual interaction, and require a greater 
demand on calculation resources. In practical applica-
tion, appropriate models should be selected according to 
different research objectives, specific problems and data 
availability.

As time transpires, the COVID-19 epidemic, inter-
ventions, and people’s responses exhibit different 

characteristics: due to the effective implementation of 
early NPIs, subsequent successful development and 
mass vaccinations against COVID-19, the continued 
emergence of variant strains, and the overall accel-
eration of variation, people’s productivity and lives 
are gradually returning to normal, and various sports 
events and public activities that had been cancelled or 
postponed due to the epidemic have been resuming. 
These characteristics render the development trend of 
the COVID-19 epidemic more complicated and unpre-
dictable. In addition, adjusting the model according to 
changes in people’s awareness of prevention is also an 
issue that warrants close attention. At the same time, 
we also need to consider the possibility of reinfec-
tion among the vaccinated population, changes in the 
transmission capacity of mutant viruses, and the fre-
quency and time points of implementation of various 
measures in the models, which can help us predict the 
epidemic, evaluate the effectiveness of prevention and 
control measures, and formulate prevention and con-
trol strategies more accurately, so as to ensure the safe 
and smooth development and recovery of public events 
and sports events as well as provide a scientific basis to 
meet the new demands in the pandemic.

Conclusions
We comprehensively reviewed the current COVID-19 
dynamic models and mainly analyzed the expanded mod-
els based on the SEIR model, meta-population models, 
and ABMs. We found that the SEIR-based expanded 
models were created mainly according to the COVID-19 
characteristics, NPIs, and the age structure of the popula-
tion, which have been relatively mature and comprehen-
sive, but further research is needed with the vaccination 
and the emergence of mutant strains. The meta-popula-
tion models and the ABMs usually adopt a relatively basic 
or simple extended compartmental structure, which can 
be the focus of future research. Unsolved problems such 
as how and when to implement prevention and control 
measures accurately still require the help of dynamic 
models, for which the compartmental structures are of 
primary importance. This study can provide an impor-
tant reference for the construction of compartments in 
future COVID-19 modeling. This may be applicable, for 
example, when constructing a reasonable dynamic model 
to simulate and evaluate the effects of different interven-
tions (and their different implementation intensity and 
frequency) on the prevention and control of COVID-19 
during large-scale sports events, or when lifting NPIs 
stepwise, etc. For the modeling of other respiratory infec-
tious diseases, it also offers important guidance value.
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