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Abstract 

Background:  There is a raising concern of a higher infectious Omicron BA.2 variant and the latest BA.4, BA.5 variant, 
made it more difficult in the mitigation process against COVID-19 pandemic. Our study aimed to find optimal control 
strategies by transmission of dynamic model from novel invasion theory.

Methods:  Based on the public data sources from January 31 to May 31, 2022, in four cities (Nanjing, Shanghai, Shen‑
zhen and Suzhou) of China. We segmented the theoretical curves into five phases based on the concept of biological 
invasion. Then, a spatial autocorrelation analysis was carried out by detecting the clustering of the studied areas. After 
that, we choose a mathematical model of COVID-19 based on system dynamics methodology to simulate numerous 
intervention measures scenarios. Finally, we have used publicly available migration data to calculate spillover risk.

Results:  Epidemics in Shanghai and Shenzhen has gone through the entire invasion phases, whereas Nanjing and 
Suzhou were all ended in the establishment phase. The results indicated that Rt value and public health and social 
measures (PHSM)-index of the epidemics were a negative correlation in all cities, except Shenzhen. The intervention 
has come into effect in different phases of invasion in all studied cities. Until the May 31, most of the spillover risk in 
Shanghai remained above the spillover risk threshold (18.81–303.84) and the actual number of the spillovers (0.94–
74.98) was also increasing along with the time. Shenzhen reported Omicron cases that was only above the spillover 
risk threshold (17.92) at the phase of outbreak, consistent with an actual partial spillover. In Nanjing and Suzhou, the 
actual number of reported cases did not exceed the spillover alert value.
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Background
During the coronavirus disease 2019 (COVID-19) pan-
demic, several variants of the severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) have been found. 
B.1.1.529 (Omicron) variant was first detected in a sam-
ple collected in Botswana on November 11, 2021, and 
first reported by South Africa on November 24, 2021 [1]. 
The SARS-CoV-2 Omicron variant has five major sublin-
eages, including BA.1, BA.2, BA.3, BA.4, and BA.5, while 
BA.1 is a transient lineage that is rapidly replaced by the 
Omicron sublineage BA.2. By March 2022, Omicron 
BA.2 variant has been identified in 133 countries and 
has been the most prevalent lineage globally, represent-
ing 85% of variant cases reported in late March, 2022 [2]. 
Outbreaks of Omicron BA.2 had also occurred in several 
regions of China, such as Guangdong Province, Shanghai 
City, Jilin Province, and Hong Kong Special Administra-
tive Region [3–6].

A concern has been raised based on the facts that 
higher infectivity of Omicron BA.2 variant, decreased 
effectiveness of current vaccines, uncertainty of thera-
peutic monoclonal antibodies and antiviral drugs for 
Omicron BA.2 [7–9], which create more challenges in 
the mitigation process against COVID-19 pandemic. The 
original strain of SARS-CoV-2 has a basic reproduction 
number (R0) of 2.5, while the Delta variant (B.1.617.2) has 
a R0 of just under 7, and R0 of Omicron BA.2 could be as 
high as 10 [10]. Even milder average clinical presentations 
may be offset by increased infection rates in the Omi-
cron variant, with the potential for considerable social 
disruption due to disease, lost productivity, and suffer-
ing, and additional strain on health care systems due to 
staffing shortages [11]. Once it has invaded a city, it is dif-
ficult to control the spread of Omicron BA.2, especially 
where there is a high population density, e.g., Shanghai 
City. However, there is little quantitative analysis on the 
process and mechanism of its spread and outbreak after 
Omicron BA.2 invasion of a city [5, 12]. The recently 
evolved strains, BA.4 and BA.5, have become dominant 
in Gauteng and appear to be fuelling a new wave of infec-
tions in South Africa, with infectivity about 36% higher 
than BA.2, which will probably cause the next Omicron 
wave [13–15].

Studies have proved that invasive species pose one of 
the most important threats to ecosystems worldwide, 
often spreading rapidly in new environments and endan-
gering the conservation of native species [16]. And the 
emergence and transportation of different mutant strains 
of epidemiology of emergency diseases like COVID-19 
into a region can be regarded as a process of biological 
invasion. In the consideration of the similarity in patterns 
of spread between invasive pathogens and SARS-CoV-2, 
the Omicron virus can be considered as a biological inva-
sion, although viral infectious diseases are rarely viewed 
as this way. Despite a long controversy on how viruses 
were classified as living organisms, the outbreak process 
of COVID-19 contains typical features of an invasive 
species, such as sudden appearance, fast reproduction 
and spread, adaptation to new environments, large-scale 
geographic transmission through human transportation 
networks, and tremendous impacts on human health 
and society. The epidemic management of SARS-CoV-2 
virus needs phase-based processes that are similar with 
invasion phases of nonpathogenic organisms, which 
was comparable to five phases: transport, colonization, 
establishment, landscape spread, outbreak phases, in line 
with biological invasion theory [17, 18]. Few studies have 
been performed in the application of biological invasion 
model to understand the spreading patterns and spillover 
risks of COVID-19 pandemic with the aim of improv-
ing the prevention or control capacity [19]. It is of great 
importance for further advancement of interdisciplinary 
methods toward applied research and management of 
invasive human pathogens and the spillover risk. Thus, 
we contend that the invasion science [20] is positioned to 
contribute substantively to understanding the pandemic 
pattens, including drivers of colonization and establish-
ment, mechanisms of the spread, and factors promoting 
outbreaks, of novel infectious pathogen of SARS-CoV-2, 
in particular of Omicron variant with much higher trans-
missibility compared with other variants.

Mathematical modelling has been essential to inform 
decision-making processes by investigating the conse-
quences of unmitigated transmission of SARS-CoV-2 in 
the various invasion phases, as well as the effectiveness of 
public health social measures. We applied the systematic 

Conclusions:  Biological invasion is positioned to contribute substantively to understanding the drivers and mecha‑
nisms of the COVID-19 spread and outbreaks. After evaluating the spillover risk of cities at each invasion phase, we 
found the dynamic zero-COVID strategy implemented in four cities successfully curb the disease epidemic peak of 
the Omicron variant, which was highly correlated to the way to perform public health and social measures in the early 
phases right after the invasion of the virus.

Keywords:  SARS-CoV-2, Omicron variant, Biological invasive theory, Dynamic models, Optimal combination of 
interventions, Spatial spillover risk
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dynamic model with the public data of four megacities 
of which population is about or over 10 million, includ-
ing Suzhou, Nanjing, Shenzhen, Shanghai in  The Peo-
ple’s Republic of China, where no local case of Omicron 
variant occurred before the study period but experienc-
ing Omicron variant invasions from January 31 to May 
31, 2022. China’s dynamic zero-COVID policy is to stem 
the resurgence of cases in time [21]. The dynamic zero- 
COVID strategy includes strict public health measures 
such as strict management of regions with COVID-19 
risk, mass nucleic acid testing, contact tracing using the 
advanced technologies [22]. In order to optimize various 
combinations of interventions under the dynamic zero-
COVID strategy, the investigation was carried out by fur-
ther understanding invasive patterns and spillover risks 
of Omicron variant in line with the invasion theory.

Methods
Data collection
To parameterize the mathematical model for the inter-
ventions on the transmission of COVID-19 (Omicron 
variant) in The People’s Republic of China, we collected 
the epidemic and intervention data in the megacities 
from official websites or reports as shown in Additional 
file 1: Table S1. The megacities were selected by the fol-
lowing criteria: (1) Where no local case of Omicron vari-
ant occurred in this city. (2) The interventions strategies 
were published by local government (like booster vac-
cination, traffic restriction of metro population-flow in 
daily records, etc.) were easy to collect. (3) Accessing the 
spillover risks from one place to other cities. The infor-
mation of reported cases (symptomatic and asympto-
matic) of 4 megacities (Nanjing, Shanghai, Shenzhen 
and Suzhou) were collected from January 31 to May 31, 
2022, provided in public by the National Health Commis-
sion (NHC) of China and local Center for Disease Con-
trol and Prevention (CDC) as shown in Additional file 1: 
Table S1. We collected the number of daily symptomatic 
and asymptomatic confirmed new cases, close contract 
tracing numbers and their reported locations in each city 
(Additional file 1).

Response policies by government was taken once the 
COVID-19 outbreak (after invasion of Omicron vari-
ant into the city). Given the difference or description of 
actual intervention measures taken in each city, with the 
reference of WHO’s public health and social measures 
(PHSM) [23] was reported, we standardize the descrip-
tion of measures as following: (1) booster vaccination, 
(2) mask wearing, (3) traffic restriction, (4) nucleic acid 
testing, (5) regional management, and (6) contact tracing. 
The data were collected by four researchers and checked 
by all of four researchers.

Data analysis
Biological invasion theory framework
Based on the concept of biological invasion [24], this 
study assumes that the spread of COVID-19 is divided 
into five phases: transport, colonization, establishment, 
landscape spread, outbreak (Additional file  1: Fig. S1). 
The theoretical curves simulated by different initial Reff 
were segmented by the time series segmentation (TSS) 
of piecewise trend approximation (PTA) method, after 
we classified the biological invasive phases based on 
theoretical curve, next we determined the segmenta-
tion of invasive phases into real outbreak curve. In order 
to tell the different phases of invasion in real epidemic 
case, we normalized of a dataset by using the mean value 
and standard deviation for all scenarios by simulation 
into the same scale, which comparing data with differ-
ent cities. Firstly, we calculate the areas under the fitted 
curve; secondly, we find the areas of each phase accord-
ing to break point time; thirdly, we find the proportions 
of each phase areas with areas in the highest point of the 
ascending period as defined by the derivative; finally, we 
calculate the area under the curve of real epic curves, 
with knowing areas in the highest point of the ascending 
period as defined by the derivative, we use the propor-
tions to detect the phases of invasion in real epics. With 
real cases developed, there is a possibility that the deriva-
tive of the highest point occurred at the beginning with 
small outbreak of epidemic, we determined this situation 
as phase of colonization (the time is less than the period 
for three generations of virus after its invasion). Then, the 
clustering analysis of study area was carried out by calcu-
lating the Moran index for spatial autocorrelation anal-
ysis. For the specific calculation process of TSS and the 
spatial autocorrelation analysis, see Additional file 1.

Model structure
We considered pre-symptomatic infections based on the 
basic susceptible-exposed-symptomatic-asymptomatic-
recovered/removed (SEIAR) transmission dynamics 
model according to the previous researches [25–29]. In 
our model, the whole population were first divided into 
two groups, completed booster vaccination population 
and uncompleted booster vaccination population. Fur-
thermore, individuals of each group were divided into 
six categories: susceptible (S), exposed (E), symptomatic 
(Is), pre-symptomatic (Ip), asymptomatic (A), removed 
(R), and quarantine (Q) including recovered and death 
(Additional file  1: Fig. S2). Also, through transmission 
dynamics model, we integrated the effects of interven-
tion strategies to SARS-CoV-2 with multiple scenarios 
by system dynamic model (Additional file 1: Fig. S3), and 
all parameters were adopted to develop the model, and 
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the description, value, and source are listed in Additional 
file  1: Table  S2. One unique difference of the system 
dynamic model is that it has been able to simulate inde-
pendent Omicron variant intervention responses such 
as the effects of nucleic acid testing and contact tracing, 
as well as social distancing, isolation, and quarantining. 
The effective reproductive number (Reff) of the model is 
as follows, using definition-based method (DBM), Rt is 
calculated using the EpiEstim package in R. The specific 
model construction process, parameter estimation, data 
simulation, calculation formula of Rt and Reff and inter-
vention measures were shown in Additional file  1, also 
the intervention simulation corresponding parameters 
were shown in Additional file 1: Table S4.

Spatial spillover risk and rank calculation
We use publicly available migration data to calculate the 
case-count threshold for spillover risk, and if it is higher 
than the calculated spillover risk, we consider that there 
is a higher likelihood of spillover risk. Specific assump-
tions and calculation formulas and values are also pre-
sented in the Additional file 1.

Software for data analysis
All statistical analyses were done in statistical software 
R (version 4.0., Lucent Technologies, Jasmine Moun-
tain, USA) and Python (version 3.8.9, Software Founda-
tion, Delaware, USA). The RK4 function is used to solve 
the differential equation of the model in deSolve pack-
age (version 1.28) in R, spearman correlation analy-
sis was used to analyze the correlation between Rt and 
PHSM (the calculation of PHSM-index were shown in 
Additional file 1: Table S3), and  the initial Reff using the 
definition-based method is calculated by numpy (version 
1.21.4) in Python.

Results
Classification of biological invasive phases
Four megacities in The People’s Republic of China (Addi-
tional file 1: Fig S4) were selected, the invasive Omicron 
variant existed for 65 days in Shenzhen, 22 days in Nan-
jing, 21 days in Suzhou, and had been lasting 92 days in 
Shanghai (as of May 31, 2022), respectively, with their 
cumulative incidence rates, 26.11‰ (649,418/24,870,000) 
in Shanghai, being the highest, followed by 0.006‰ 
(105/17,560,100) in Shenzhen, 0.003‰ (27/9,310,000) in 
Nanjing and 0.002‰ (22/12,748,262) in Suzhou.

According to the biological invasion theory, the epi-
demic from the first invasion day of Omicron variant to 
the day of the peak of reported cases (refers to the date 
corresponding to when the peak number of reported inci-
dences reached its peak value) in each city were divided 
into five phases: transport, colonization, establishment, 

landscape spread, outbreak, within the epidemic curves 
plotted by the reported daily incidences in the four cities 
(Fig. 1).

Differences in phase division were observed in each 
city both occurred in the theoretical curves (Additional 
file 1: Fig. S5–S8) and the actual epidemic curve which is 
influenced by its respective basic vaccinations and inter-
ventions. Epidemics in Shanghai, Shenzhen has gone 
through the whole invasion phases, whereas in Nanjing 
and Suzhou, the epidemics only ended in the establish-
ment phase. The duration of each phase varied from 
city to city. As of May 31, Shanghai has already entered 
the outbreak phase (32 days from transport phase) with 
the  highest incidence rate of 1.058‰, but the peak of 
epidemic curve has not yet appeared. Shenzhen entered 
the outbreak phase (31  days from transport phase) and 
reached the epidemic peak on the 46th day with the high-
est incidence rate of 0.006‰. The establishment phase 
lasted 12  days in Shenzhen and 17  days in Shanghai. 
The duration of the landscape spread in Shanghai and 
Shenzhen were 9 days and 13 days, respectively. Epidem-
ics in Nanjing and Suzhou have reached the peak of the 
epidemic at the colonization phase and then showed a 
decreased trend in the establishment phase, and the high-
est incidence rate were 0.0028‰, 0.0020‰, respectively.

Spatial autocorrelation of the epidemic varied at each 
phase in the four cities (Table 1). Shanghai showed a sig-
nificant spatial aggregation at the very beginning phase 
of invasion process (Moran’s I = 0.106), and spatial aggre-
gation increased from the colonization phase to the out-
break phase. Shenzhen showed spatial dispersion with 
no statistics significance at the beginning (P = 0.602), but 
showed significant spatial aggregation during the land-
scape spread phase (Moran’s I = 0.239), then this spatial 
aggregation increased on the outbreak phase (Moran’s 
I = 0.472). Nanjing and Suzhou showed the smaller spa-
tial aggregation with statistics significance only dur-
ing the colonization phase (Moran’s I = 0.037, Moran’s 
I = 0.272).

Time‑varying reproduction number (Rt) value and actual 
interventions in four cities
We build the epidemic curve (Additional file 1: Fig. S5–
S8: Five stages of the epidemic curve based on the theory 
of biological invasion in Shanghai, Shenzhen, Nanjing, 
and Suzhou, respectively) to understand the nature epi-
demic patterns of each city based on Rt values at the 
beginning of Omicron variant invasions. The median 
(inter-quartile range, IQR) of Rt values (Fig. 2) for the four 
studied cities, e.g., Shanghai, Shenzhen, Nanjing, Suzhou 
during the epidemic period are 1.762 (1.757, 1.770), 1.180 
(1.067, 1.262), 0.576 (0.514, 0.644), and 0.740 (0.678, 
0.807), respectively. The range of PHSM-index values 
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Fig. 1  Four phases of the epidemic curve based on the theory of biological invasion (The five phases include transport, colonization, 
establishment, landscape spread, outbreak. The transport phase is define as the time of reporting of the first case in Additional file 1: Fig. S1. Each 
phase was partitioned by the segmentation of the theoretical curves. The newly reported cases of each city were illustrated in blue bar. The case 
distribution patterns in each city is also showed under the figures to corresponding to each epidemic phase)

Table 1  Results of invasion phase and spatial autocorrelation analysis

“–” refers to the null value

Phase Start date Duration (days) Number of cumulative 
reported cases

Moran’s I P-value

Shanghai City Transport – – – – –

Colonization 2022/3/1 6 121 0.106  < 0.01

Establishment 2022/3/7 17 5852 0.644  < 0.01

Landscape spread 2022/3/24 9 36,815 0.769  < 0.01

Outbreak 2022/4/2  > 10 210,796 0.779  < 0.01

Shenzhen City Transport – – – – –

Colonization 2022/1/31 6 6 − 0.018 0.602

Establishment 2022/2/6 12 21 − 0.027 0.640

Landscape spread 2022/2/18 13 179 0.239  < 0.01

Outbreak 2022/3/3 28 28 0.472  < 0.01

Nanjing City Transport – – – – –

Colonization 2022/3/10 6 61 0.037  < 0.01

Establishment 2022/3/16 15 51 – –

Landscape spread – – – – –

Outbreak – – – – –

Suzhou City Transport – – – – –

Colonization 2022/2/10 16 31 0.272  < 0.01

Establishment 2022/2/16 10 124 – –

Landscape spread – – – – –

Outbreak – – 0 – –
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(Fig.  2) for the four studied cities during the epidemic 
period are 28.88–80.02, 50.36–83.42, 3.20–77.90, and 
33.93–76.21, respectively, and more details data were 
shown in Additional file 1: Table. S6.

During the process of Omicron variant invasion into 
the four cities, the Rt value and PHSM-index of four cit-
ies showed a negative correlation in three cities except 
Shenzhen (r = − 0.316, P = 0.002; r = − 0.255, P = 0.060; 
r = − 0.961, P = 0.000; r = − 0.531, P = 0.028) (Additional 
file  1: Table  S7). Rt values in Shenzhen showed signifi-
cant fluctuations over time, while the other three cities 
showed a rapid downward trend, with Shanghai show-
ing a small rebound from the initial decline. The specific 

values for each invasion phase are given in the Additional 
file 1: Table S5.

The Rt value varied among four studied cities that influ-
enced by the value of PHSM-index in the early phases, 
such as colonization and establishment phases. For 
example, in Nanjing, Rt value was controlled to below 1 
during the phase of establishment with the PHSM-index 
of 71.0–77.9 and did not rebound due to the rapid pub-
lic health interventions. Main interventions conducted in 
Nanjing include nucleic acid screening per 1–2 day in the 
control and restriction areas. In Suzhou, the Rt value was 
quickly controlled to under 1 within 7 days at the phase 
of establishment. In Shenzhen, the Rt value was gradually 

Fig. 2  Real-time regeneration numbers and real-time interventions in the studied cities (The PHSM-index of each city was illustrated in light blue 
lines. The real-time generation number of each city was shown in orange lines with quartile 25 and quartile 75 in orange shades, and the red 
dashed boxes denote real-time measures. The color of bottom six bars denotes measures of each city, A: Booster vaccination; B: Mask wearing; C: 
Nucleic acid testing: D: Close contact management; E: Regional management: F: Traffic restriction. The coverage rates of booster vaccination were 
Shanghai (45.0%), Shenzhen (62.0%), Nanjing (52.7%), and Suzhou (36.4%) before the invasion of Omicron variant. All four cities required the public 
to wear masks in public places in the early phases of the epidemic (transport phase), and manage the booster vaccination, conducted rules of 
nucleic acid testing for people at risk and risk area management. Shenzhen, Nanjing and Suzhou started nucleic acid screening in several risk areas 
at the transport phase. Shanghai has implemented a city-wide management since April 4. From March 28 to 31, all stations of the Shanghai subway 
were shut down from east and south of the Huangpu River. Shanghai has adopted comprehensive PHSM including citywide “static management”, 
comprehensive nucleic acid screening, comprehensive mobile surveys, and universal cleaning and disinfection since March 30. Shenzhen has 
adopted the intervention of "a short, sharp blockade to quell the outbreak" since March 14. Other cities, such as Nanjing and Suzhou, have adopted 
daily nucleic acid screening)



Page 7 of 13Rui et al. Infectious Diseases of Poverty          (2022) 11:115 	

reduced as the intervention was strengthened at the 
stage of colonization and early period of establishment 
with the PHSM-index of 65.97–70.81, but the epidemic 
rebounded later, when the intra-city transportation was 
suspended and mass nucleic acid testing was conducted 
for a week and then the Rt value was effectively controlled 
to below 1 again when the PHSM-index reaches 83.40. In 
Shanghai, the Rt values showed a substantially slow trend 
of reduction with the PHSM-index climbing from 28.88 
to 88.02, and has been being Rt > 1 till the end of our ana-
lyzing time.

Simulations of intervention effects
Single intervention and various combinations of inter-
ventions were simulated by the system dynamic model 
with booster vaccination intervention for the four cities. 
We have simulated 188 various interventions for each 
city to test whether there were better interventions to 
achieve the controlling targets at each phase (Additional 
file  1: Fig. S9–S13: Simulation of different mask wear 
rates, social distances, isolation ratios, combinations of 
mask wear and social distance rates, and comprehensive 
interventions in 4 cities, respectively). And the detailed 

data of various simulations were founded in Additional 
file 1: Table S8–S12.

Firstly, we simulated the trend of the epidemic (cumu-
lative number of cases and new cases) in four cities with 
no intervention and three different levels of interven-
tions (by reduction of 10%, 20%, 30% for interventions) 
(Fig.  3A1–D2, A2–D2). The simulation results showed 
that the cumulative number of cases in all four cities 
approached 100% in the no-intervention scenario when 
it reached the outbreak phase, and decreased gradually 
in the intervention scenario. The cumulative number of 
cases decreased by 30.37% (IQR: 20.20%, 90.58%) and the 
time to peak was progressively delayed by 37.5 (IQR: 26, 
94.5) days in the four cities as a result of the combined 
interventions. The results indicated that the intervention 
has come into effect, to a certain extent, and achieved the 
goals of "suppressing the peak/cutting the peak and slow-
ing down the epidemic" in various phases of invasion in 
all studied cities.

Secondly, we simulated the actual situations in four 
cities (Fig.  3A3–D3), and effects of a combination of 
four different interventions were analyzed in each city. 
Since the epidemic in Shanghai was still in an increasing 

Fig. 3  Simulation results of mixed intervention scenarios in the four cities: no intervention, 10–30% intervention. From top to bottom are the 
four cities, and from left to right are the cumulative number of cases, the number of new cases (four optimal mixed measures applied at 0% 
(No-intervention), 10% (M_20%&S_D_20%&I_R_10%), 20% (M_20%&S_D_30%&I_R_20%), and 30% strength (M_10%&S_D_50%&I_R_30%), and the 
number of new cases multiple mixed measures applied at 100% strength, A3–D3 denotes the effect of different interventions (specific measures in 
the legend) in the four cities at the respective intervention dates (Shanghai: Apr 12, Shenzhen: Mar 17, Nanjing: Mar 16, Suzhou: Feb 14)
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pattern as of April 22, we estimated four combinations of 
interventions that were realistic for Shanghai. The most 
effective interventions in the four cities showed in Fig. 3 
were red, followed by green, yellow and blue,  (M: Mask 
wear; S_D: Social distance rates; I_R: Isolation rates ). 
Although both Shanghai and Shenzhen started to inten-
sify their interventions during the outbreak phase, the 
four different interventions in Shanghai reduced the 
cumulative incidence by 96.5%, 97.1%, 97.2%, and 97.6%, 
respectively, compared to the no-intervention state. 
While the four interventions in Shenzhen reduced the 
cumulative incidence by almost 100% compared to the 
no-intervention state. Both Nanjing and Suzhou inten-
sified their interventions at the colonization stage, as a 
result, their four interventions reduced the cumulative 
number of cases by 100% relative to the no-intervention 
state.

The simulations of the real-world epidemic trends are 
generally consistent as shown in Fig.  3. We have found 
the highest actual quarantine rate before the landscape 
spread phase in Suzhou (more than 90%), followed by 
Nanjing (more than 75%), Shenzhen (more than 55%), 
and Shanghai (less than 50%), respectively. The compre-
hensive assessment of intervention intensity of measures 
in the studied cities demonstrated that the higher inten-
sity of the interventions carried out in the colonization or 
establishment phases the easier to rapidly control the epi-
demic and the earlier to achieve the goal of "cutting the 
peak and slowing down the epidemic" and reducing the 
medical burden, under the framework of dynamic zero-
COVID strategy.

Assessment of spatial spillover risk
As of May 31, the actual rate of spatial spillover shows 
that Shenzhen has the longest duration of the outbreak, 
followed by Shanghai, Suzhou, and Nanjing (Additional 
file 1: Fig. S14). By simulating the actual number of spillo-
ver case in the three cities, except for Shanghai, during 
the epidemic was less than 1. The median actual spillo-
ver cases in Shanghai were 2.858 during the coloniza-
tion phase and has been in the rising pattern since then 
(Fig. 4A). The spillover curve is also proportional to the 
number of reported cases per day, with the risk of spillo-
ver increasing as the number of reported cases increased. 
The actual spillover rate in Shanghai is substantially 
higher than that of other three cities with the highest 
spillover risk in all phases, followed by Shenzhen, Nan-
jing, and Suzhou (Fig. 4A, Additional file 1: Table S13).

The spillover risk threshold is an important indica-
tor reflecting the zero spatial spillover case occurred 
when the total number of Omicron cases found in one 
city. From the colonization phase until May 31, most 
of the spillover risk in Shanghai remained above the 

spillover risk threshold (IQR) [18.810 (8.478,  42.259)–
291.537(144.861,  624.441)] and the actual number of 
the spillovers (0.947–74.986) was also increasing along 
the time (Fig.  4B). Shenzhen reported Omicron cases 
was only above the spillover risk threshold (17.923) at 
the phase of outbreak, consistent with an actual par-
tial spillover. In Nanjing and Suzhou, the actual num-
ber of reported cases did not exceed the spillover alert 
value (16.127, 14.910) and no actual spillover cases were 
reported during this round of Omicron epidemic, how-
ever, the absence of spillover risks cannot be ruled out.

Discussion
With the changes in the pandemic patterns of COVID-
19, especially the rapid spread of Omicron variant with 
a large proportion of asymptomatic patients, the effects 
of control in many countries are not ideal. Although it 
is in the critical stage to control COVID-19 with faster 
spreading and higher transmissibility of Omicron variant, 
China still adheres to the dynamic zero-COVID strategy 
to prevent the continuous spread and reduce the burden 
on Chinese population and save more lives in the old, 
through early detection, rapid containment, and cutting 
off transmission. Therefore, it is of significance to find 
the determinants measuring the intensity of Omicron 
epidemic and giving alarming signals to start different 
interventions, e.g., the integrated intervention, especially 
in the raising stage of the disease epidemic [30]. In this 
study, spatiotemporal invasion dynamics and optimal 
control strategies of SARS-CoV-2 Omicron variant were 
investigated. First, the concept of biological invasion was 
incorporated into the spread of COVID-19 of Omicron 
variant for the first time, and the segmentation under 
dynamic zero-COVID strategy was quantitatively ana-
lyzed by using TSS and the Moran’s I index. Second, a 
mathematical model of COVID-19 based on the system 
dynamics methodology was performed for the evalua-
tion of intervention strategy optimization followed by the 
index calculation of interventions. Third, it assessed the 
spatial spillover risks between cities at different invasion 
phases during the spread of COVID-19 caused by the 
Omicron variant.

The dynamic zero‑COVID strategy in China
The current dynamic zero-COVID strategy conducted 
in China, is to take prompt precise and comprehensive 
approach to contain the sporadic cases once reported in 
the beginning of invasion phases, cut off the transpor-
tation to colonization, and end the epidemic in a timely 
manner (to “find one, end one”) [31, 32], with an aim to 
achieve the maximum effectiveness at the lowest cost. 
Considering the transmission of SARS-CoV-2 Omicron 
variant happened in a city in the context of biological 
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invasion, the phases from transport to outbreak is deter-
mined by the coevolutionary relationship between the 
organisms and their natural or/and social settings, so 
do the measures to stop its transmission, particularly 
the PHSM that we can handle and implement to gain 
the zero COVID-19 case at each of separate phases [33]. 
Here we put forward the major interventions needed in 
each phase. (i) From this study we found that before the 
transport of imported cases into a city, regular quaran-
tine and surveillance by nuclear acid screening are essen-
tial to detect the risk at the earliest time. (ii) At the phases 
of transport and colonization, the emphasis is mainly on 
the rapid location of close contacts and strengthened 
nucleic acid screening among enlarged risk groups. (iii) 
Identification of close contacts using new technologies 
like big data analysis is an efficient option before the 
phase of landscape spread in the golden response time 
(within 24 h after each report), so as to end the epidemic 
within one or two maximum incubation periods [21, 34]. 

(iv) Timely nuclear acid screening is always an essential 
tool in detecting and controlling the spread of COVID-
19 [35]. At the phases of establishment and landscape 
spread, more intensive measures are implemented among 
the public, such as the mass screening by nucleic acid 
screening and end of social activity, so as to cut off pos-
sible transmission routes and protect susceptible popula-
tion from infections. (v) During the outbreak phase, the 
combination of city-wide enhanced management, daily 
nucleic acid screening, reduction of severe cases and 
timely treatment of the COVID-19 patients with other 
underlying diseases are conducted to limit its spread and 
control the spatial spillover [33, 34, 36].

The arrival of Omicron variant with the R0 approxi-
mately of 10 and high proportion of asymptomatic 
cases (93.4%) poses great challenges to the implemen-
tation of “dynamic zero-COVID” policy [37], but as 
long as we adopt the prompter, more precise, more 
stringent approach, the cessation of sporadic or cluster 

Fig. 4  Actual and threshold of spatial spillover risk (A The newly reported confirmed cases and asymptomatic cases of each city were illustrated in 
light blue and dark blue columns. The threshold of spillover risk of each city was shown in pink lines with quartile 25 and quartile 75 in pink shades. 
B The solid line represents the spillover risk, and the positive and inverted triangles represent the duration start and end, respectively. The actual 
spillover rates of the study regions are distinguished by different colors: Shanghai (blue), Shenzhen (orange), Nanjing (green), and Suzhou (red))
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cases spreading is possible at the early stage of the inva-
sion. As shown in this study, Suzhou halted the epi-
demic in the establishment phase with the PHSM-index 
of 69.91–70.77, containing the Rt of Omicron within 
3.28 → 0.74 → 0; Nanjing also stopped the epidemic in 
the establishment phase, with the PHSM-index of 65.84–
77.91 and the Rt of 3.01 → 0.58 → 0. Although Shenzhen, 
with the PHSM-index of 70.81 and 65.97 in the estab-
lishment phase and outbreak phase, failed to constrain 
the epidemic from outbreak, but the outbreak phase 
was ended during a short period (30 days) compared to 
Shanghai (more than 42  days) where the PHSM-index 
was 28.88–72.44 and 88.88 in the establishment phase 
and outbreak phase, respectively.

Optimal control strategies in 5 invasive phases
Mining the regularity of the data in detail lays the foun-
dation for the precise division of invasion phases and 
optimization of control strategies in different phases. The 
results in this study showed that proactive and aggressive 
containing measures had been implemented by all 4 cit-
ies, consequently avoiding approximately 97.8%, 99.9%, 
99.9% and 99.9% of the infections, equivalent to 24.20 
million, 16.57 million, 8.99 million and 12.34 million peo-
ple of Shanghai, Shenzhen, Nanjing, Suzhou, respectively, 
as of May 31, 2022. It was also founded that differences 
in the spatiotemporal invasion dynamics of the four cities 
was mainly related to the intensity of control measures 
in these cities. Nanjing and Suzhou launched a first-level 
public health emergency response in a very proactive 
manner, for instance, those response actions includ-
ing earlier traffic restrictions and nucleic acid screen-
ing, more strict social distance, and region management, 
immediately after the transportation or at the begin-
ning of invasion occurred. These actions have reflected 
in PHSM-index that increased to over 80 at the coloni-
zation phase, far before the outbreak rose to epidemic 
levels, so that the Omicron variant failed to colonize in 
Nanjing and Suzhou, reflecting in the pandemic curve 
that began to be declined during the colonization phase. 
However, Shenzhen has gradually increased the PHSM 
efforts during the colonization and establishment phases, 
and successfully extended the time required for coloniza-
tion and incubation, leaving more time for the prepara-
tion of the medical system. Finally, the pandemic curve 
reached the peak in the landscape spread phase and then 
began to decline. In comparison, Shanghai’s epidemic 
gradually increased less intensive PHSM efforts during 
the periods of colonization, incubation, and landscape 
spread phases than that in Shenzhen, as a result of that 
the actual pandemic curve in Shanghai has arrived the 
outbreak phase. But all those invasive phases were based 
on the first case import led to city outbreak, frequently 

invade were not included in our study, and further works 
will be researched on this part.

Based on the types, implementation time, and intensity 
of PHSM, the existence of the optimal control strategy 
is proved at each invasion phase, with following facts. 
Firstly, compared with single intervention measure, the 
optimal combination of interventions, including mask 
wearing, social distance, and quarantine, reduced infec-
tion by 99%, which was consistent with previous study 
[38]. Secondly, in a scenario when implementation of 
three main interventions is not possible, a strategy of two 
interventions would be more effective than a single inter-
vention at each invasion phase with the target of control-
ling the COVID-19 transmission. Thirdly, the event that a 
testing screen delay of 2 days was less efficient than that 
implemented two days in advance, when fixed intensity of 
intervention, has found in the simulation analysis, which 
demonstrated that earlier interventions are more effec-
tive to curb the spread of the epidemic. Finally, the inten-
sity for each intervention measures have been adjusted 
at the various invasion phases in the invasion process in 
all cities. We are able to optimize control strategies in 
Shanghai and Shenzhen based on the different intensive 
level of combinations of PHSM strategies in each inva-
sion phase, which demonstrated higher intensive meas-
ures lead to shorter epidemic period and lower epidemic 
peak for both cities.

In sensitivity analysis, we varied the basic reproduction 
number R0 to assess impact of combinations of interven-
tions. This analysis showed that a combination of all three 
interventions were effective in nearly all scenarios. Rapid, 
intensive, and combined strategies can be highly effective 
in the early control of COVID-19, but places substantial 
demands on the local public-health authorities. However, 
upfront expenditures could decrease downstream bur-
den by preventing infected cases, hospitalizations, and 
additional resource use. This model can provide a valu-
able reference for policymakers in various cities with dif-
ferent COVID-19 vaccination coverage, enabling them to 
choose more effective prevention and control strategies 
based on practical implementation considerations.

The spillover thresholds in each of invasive phases
It is the first time to apply the concept of spillover 
effects into the spread of COVID-19 of Omicron vari-
ant, in spite of fact that it has been expanded in many 
fields, such as in stock markets [39], on energy sector 
[40], and on the US tourism subsectors [41], to rep-
resent the exported infection risk to the other loca-
tions during the epidemic of Omicron variant with 
higher transmissibility. The spillover values and spill-
over thresholds varied in four typical megacities at 
each phase of Omicron variant invasion. The number 
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of spillover infections, and affected cities nationwide 
increased gradually from the "transport" phase to the 
"outbreak" phase of the epidemic base on the analysis 
for the data from Shanghai and Shenzhen. The model in 
Shanghai indicated that the median of spillover infec-
tions increased from the "transport" phase to "out-
break" phase by 629.1% (Additional file  1: Table  S13). 
This is likely due to the high infectiousness and low 
pathogenicity of the Omicron variant reflecting in the 
high proportion of asymptomatic infections that are 
difficult to detect [42–44], as well as the substantially 
lower intensity of control measures implemented in 
Shanghai compared to other three cities. In addition, it 
can also be seen from the migration index in Shanghai 
that the overall flow of population at different phases is 
gradually declining, with the migration index falling by 
about 94% with 45 days. The low migration index when 
enter to the outbreak phase in Shanghai remained to 
the date that we publish this analysis. This shows that 
although the number of the outgoing population is 
being controlled gradually, the continuous development 
of the local outbreak will largely cause the spillover of 
the disease and thus affect other neighboring cities or 
areas across the country. The spillover risk in Shenz-
hen was substantial at the early phase of colonization, 
when the spillover threshold is exceeded. Even though 
the outgoing population of Shenzhen spatially spread 
to many cities in surrounding provinces, the overall 
spillover was controlled at a low level, with the migra-
tion index dropping by around 70% during colonization 
phase, and has remained at a low level since then. Due 
to the effective control during the colonization phase 
of Omicron variant, no substantial spillover risks were 
identified at any phase in Suzhou and Nanjing. Our 
analysis indicated that the two important aspects of 
controlling spillover were local control of epidemic and 
population outflow control. The data from Suzhou and 
Nanjing shows that strict measures in the above two 
dimensions during and before establishment phase can 
effectively decrease the spillover risk and minimize the 
risk to other regions. Our findings was supported by 
another study about spillovers from vaccines and mass 
drug administration to control infectious disease [45]. 
It is quite novel to quantify the interregional spillover 
effects and the extent to which these spillover events 
have an impact on the increase of COVID-19 outbreak 
vulnerability in other megacities in China. Our study 
has also proven that high variation of different invasive 
phases of Omicron pandemics have distinctive spillover 
effects in various degrees on neighboring areas if con-
trol measures were not strong enough in the early inva-
sion phases.

Limitations of this study
First, we applied the daily number of reported cases 
for each city and there may be some time lag between 
infected and reported dates, which might cause displace-
ment of the invasion phases to some extent. In addition, 
limited by the testing capacity of nucleic acid screening, 
the cases from the same population may be reported 
on different days because of the delay of testing results. 
However, the daily reported cases could reflect the inci-
dence trends. Second, when analyzing the correlation 
between PHSM-index and Rt, the number of samples of 
PHSM-index data may have some effects on the results; 
we did not consider the age grouping for each city in the 
dynamic models, which might affect the susceptibility 
of population in the models. Another limitation of this 
study is that no sensitivity analysis was performed on 
the parameters of the model, but rather the parameters 
were set based on previous studies. Third, because of the 
short time span of the study area and the unclear rate of 
the attenuation of the protective effect of the vaccine, so 
we did not consider it when building the model which 
may have led to an increased risk of patient infection. 
Fourthly, the absolute number of outflows in this study 
is estimated by using the Baidu migration index and the 
absolute number of flows on special holiday, which may 
have some differences from the real amount of the out-
flows. The use of Baidu migration index may miss some 
of the people who go out without smartphones, such 
as the elderly and children; in addition, in some special 
cases, when the outflow is controlled, a small number of 
people may go out without smartphones on purpose to 
avoid the monitoring of big data. We have therefore set 
a parameter to the formula for calculating the size of the 
population migrating from Baidu to correct for the num-
ber of people who are really moving, but there is no way 
to verify whether this parameter is true and valid at the 
moment.

Conclusions
We quantified the real epidemic curve for each city into 
five invasion phases based on the invasion theory to 
provide evidence for detailed judgments and prompt 
warnings of epidemic development, which offers Svalu-
able underexploited frameworks and insights to the 
COVID-19 pandemic. Also, the system dynamics models 
simulated optimized interventions and spillover risk in 
different cities, the importance of early and rapid, high 
intensity interventions, combined and optimal control 
measures is the back of the success in cutting off the epi-
demic peak. It is recommended that after the transport 
of cases, governments could quickly benchmark the 
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invasion phases proposed in this paper as well as opti-
mal PHSM by simulating interventions, and evaluate the 
spillover risk at the various phases of invasion, to delay or 
flatten the epidemic curve inside the city, decreasing the 
spillover risk outside the city, and finally achieve the goal 
of dynamic zero case of COVID-19.
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