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Abstract 

Background Brucellosis is a common zoonotic infectious disease in China. This study aimed to investigate the inci‑
dence trends of brucellosis in China, construct an optimal prediction model, and analyze the driving role of climatic 
factors for human brucellosis.

Methods Using brucellosis incidence, and the socioeconomic and climatic data for 2014–2020 in China, we per‑
formed spatiotemporal analyses and calculated correlations with brucellosis incidence in China, developed and com‑
pared a series of regression and Seasonal Autoregressive Integrated Moving Average X (SARIMAX) models for brucel‑
losis prediction based on socioeconomic and climatic data, and analyzed the relationship between extreme weather 
conditions and brucellosis incidence using copula models.

Results In total, 327,456 brucellosis cases were reported in China in 2014–2020 (monthly average of 3898 cases). The 
incidence of brucellosis was distinctly seasonal, with a high incidence in spring and summer and an average annual 
peak in May. The incidence rate was highest in the northern regions’ arid and continental climatic zones (1.88 and 
0.47 per million people, respectively) and lowest in the tropics (0.003 per million people). The incidence of brucellosis 
showed opposite trends of decrease and increase in northern and southern China, respectively, with an overall severe 
epidemic in northern China. Most regression models using socioeconomic and climatic data cannot predict brucello‑
sis incidence. The SARIMAX model was suitable for brucellosis prediction. There were significant negative correlations 
between the proportion of extreme weather values for both high sunshine and high humidity and the incidence of 
brucellosis as follows: high sunshine, r  = −0.59 and −0.69 in arid and temperate zones; high humidity, r  = −0.62, 
−0.64, and −0.65 in arid, temperate, and tropical zones.
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Conclusions Significant seasonal and climatic zone differences were observed for brucellosis incidence in China. 
Sunlight, humidity, and wind speed significantly influenced brucellosis. The SARIMAX model performed better for 
brucellosis prediction than did the regression model. Notably, high sunshine and humidity values in extreme weather 
conditions negatively affect brucellosis. Brucellosis should be managed according to the “One Health” concept.

Keywords Human brucellosis, Socioeconomics, Climatic, Extreme weather, Copula model

Background
Brucellosis, caused by Brucella, remains one of the most 
common zoonotic diseases worldwide. [1]. In recent 
years, the incidence rate of human brucellosis (HB) has 
rapidly increased [2, 3]. HB is usually associated with 
direct contact with infected livestock or ingestion of 
unpasteurized dairy products from infected animals [4]. 
Brucellosis has remained a major public health problem 
in China [5, 6]. Since the 1990s, the incidence rate of bru-
cellosis has been increasing, and it has been listed as one 
of the ten most common class A and class B infectious 
diseases in the People’s Republic of China according to 
the national legislation for the prevention and control 
of infectious diseases [2]. According to the latest litera-
ture, from 1950 to 2018, the national infectious disease 
surveillance system in China reported 6,84,380 HB cases 
[7]. The incidence of HB peaked in 2014 (4.32/100,000), 
and the geographical range from historically affected 
northern China to the southern provinces significantly 
expanded [8, 9]. The National Brucellosis Prevention 
and Control Plan (NBPCP; 2016–2020) was framed to 
prevent and control brucellosis [10]. After the imple-
mentation of the plan, the serum prevalence of brucel-
losis among high-risk occupational groups in some areas 
decreased significantly, although more data are needed 
for a comprehensive evaluation.

In recent years, studies have shown that global warm-
ing has increased the activity range of animals that 
carry viruses, increased the transmission probability of 
zoonoses, and has become one of the main reasons for 
zoonotic transmission [11, 12]. However, the impact of 
climate change on zoonosis, especially brucellosis, has 
been largely ignored [13]. By analyzing the relationship 
between the distribution of HB in China and socioeco-
nomic, environmental, and ecological factors from 2004 
to 2017, Peng et  al. reported a significant correlation 
between gross domestic product (GDP), climate, and 
brucellosis cases herein [14]. Cao et al. used the autore-
gressive integrated moving average (ARIMA) model to 
prove that atmospheric pressure, wind speed, mean tem-
perature, and relative humidity significantly impacted 
brucellosis [15]. Liu et  al. used a distributed lag non-
linear model to show that changes in climatic factors, 
especially changes in temperature, sunshine hours, and 
evaporation, significantly influence seasonal fluctuations 

of HB [16]. Other studies have shown that brucello-
sis is strongly correlated with the normalized differ-
ence vegetation index (NDVI) and the numbers of cattle 
and sheep [17, 18]. However, these studies have mainly 
focused on areas with a high incidence of brucellosis and 
the research results are limited to the correlation analy-
sis between economic and climate factors and HB. Thus, 
there is a lack of in-depth and comprehensive analysis of 
the factors influencing HB in China.

Climate change poses a greater challenge to preventing 
and controlling brucellosis in China [19, 20]. At present, 
research analyzing the temporal and spatial patterns of 
brucellosis in China using high-quality national incidence 
rate data is lacking. We describe the scale and distribu-
tion of brucellosis in China and emphasize the recent 
recurrence by analyzing data from city-level monthly 
reported cases of HB in China from 2014 to 2020. To 
further understand this mechanism, we used relevant cli-
matic and socioeconomic data to analyze the main influ-
encing factors of HB by building a mathematical model, 
which will help promote the monitoring and early warn-
ing of brucellosis outbreaks.

Methods
Data collection and study area
We obtained climate data, including precipitation, sun-
shine duration, relative humidity, wind speed, and tem-
perature for over 300 prefecture-level cities in China 
from the China Climatic Data Sharing Service System 
[21]. Urban socioenvironmental data were obtained from 
the city statistical yearbook [22], and the incidence data 
of HB were obtained from the Data Center for China 
Public Health Science [23]. This study focused on cli-
matic, socioenvironmental, and brucellosis data for Chi-
nese prefecture-level cities, from 2014 to 2020. Therefore, 
we obtained various types of data during these 7 years.

Data preprocessing and classification
High data resolution exponentially increases compu-
tational complexity, whereas low resolution leads to 
unclear trends in results and a lack of statistical signifi-
cance. We used average monthly climatic and brucellosis 
data to balance the model’s performance and accuracy. 
The data mainly included monthly average precipitation 
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(MAP), monthly average sunshine (MAS), monthly 
average humidity (MAH), monthly average wind speed 
(MAWS), monthly average temperature (MAT), and 
monthly average incidence (MAI). The raw socioenviron-
mental data were annual compilations; therefore, it was 
impossible to perform monthly average processing analy-
sis. We performed a fundamental statistical analysis of all 
data before formal modeling using SPSS Statistics version 
28 (SPSS Inc., Chicago, USA).

There are various methods of geographic zoning in 
China; in this study, we used traditional north–south 
zoning for climatic conditions and economic condi-
tions. North–south zoning, with the Qinling Mountains-
Huaihe River line as the dividing line, is China’s most 
common and accepted zoning method [14]. Specifically, 
China can be divided into five major climatic zones based 
on the Köppen climate [24, 25]: equatorial, arid, warm, 
cold, temperate, and polar, and four major geographi-
cal regions based on economic conditions: east, central, 
west, and northeast [26]. To correlate the results with 
meteorology and socioenvironmental science, we divided 
the Chinese prefecture-level cities used in this study into 
economic and climatic zone regions according to the 
above general guidelines.

Furthermore, this study focused on the effects of 
weather extremes on the incidence of brucellosis in 
China. There are many ways to select and define extreme 
weather conditions based on different criteria. We set 
the quantile threshold through comparative analysis as a 
suitable extreme weather classification for our data [27]. 
For marginal distributions of selected climatic data, we 
defined values less than one-quarter or more than three-
quarters of the range as extreme weather intervals.

Model overview
This study used several prediction models for climatic, 
socioenvironmental, and brucellosis data for compara-
tive analysis, starting with classical statistical regression 
models. Based on the nature of the data and prior statis-
tical analysis results, we used stepwise regression, ridge 
regression, robust regression, quantile regression, and 
partial least squares (PLS) regression after model selec-
tion. In these regression models, quantitative climatic 
and socio-environmental data, and qualitative regional 
classification data were used as independent variables, 
and brucellosis data were used as dependent variables for 
the input and output of the results.

Moreover, we improved the machine learning model 
using a seasonal autoregressive integrated moving aver-
age with exogenous variables (SARIMAX) dedicated to 
time-series prediction. Compared to the SARIMA model 

for seasonal time-series prediction, the SARIMAX model 
is mainly suitable for studying the effects of exogenous 
variables on seasonal time-series prediction and is typi-
cally used in climatic prediction studies. Compared to the 
parameters p , d , and q of the classical ARIMA model, the 
SARIMAX model includes four new parameters, namely 
P (seasonal autoregressive order), D (seasonal difference 
order), Q (seasonal moving average order), and S (seasonal 
cycle step). This study used data on various climatic con-
ditions as exogenous variables. The model selection crite-
ria for SARIMAX were the Akaike information criterion 
(AIC), Bayesian information criterion (BIC), and Hannan-
Quin information criterion (HQIC) for assessing informa-
tion loss.

Finally, we used a copula model to eliminate collinear-
ity between climatic data and analyze extreme weather’s 
effect on brucellosis. We used three marginal distributions 
(Weibull, Gumbel, and Frechet) and three copula functions 
(Frank, Gumbel, and Clayton) to analyze the two types of 
climatic data with the highest absolute values of Kendall 
correlation coefficients with brucellosis to screen for the 
best performing model. The filtering criterion for the edge 
distribution was the goodness-of-fit (GOF) R2 maximum. 
In contrast, the filtering criterion for the copula function is 
AIC.

The copula function is a statistical theory that quantifies 
the correlation between random variables [28, 29], and its 
core connection formula is as follows:

where F  is the joint probability density function; C is the 
copula function; and F1 and F2 are the marginal cumu-
lative distribution functions of the two random vari-
ables. The domain of the copula function C is defined 
on an N-dimensional space of [0, 1] , and a monotonically 
increasing function in each dimension. Boundary condi-
tions must satisfy the following equations:

In addition, any point on the copula function c must ful-
fill the following inequality:

The formula for the two-dimensional parametric copula 
function applicable to the climatic data used in this study 
is as follows:

F(X1,X2) = C(F1(X1), F2(X2))

C(u, 0) = C(0, v) = 0,

C(u, 1) = C(1,u) = u,

C(v, 1) = C(1, v) = v

C(u1,u2)+ C(v1, v2)− C(u1, v2)− C(u2, v1) ≥ 0
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Frank copula

Gumbel–Hougaard copula (in two-dimensional state)

Clayton copula (in a two-dimensional state)

where u1 and u2 represent two random variables.

Results
Spatial and temporal distributions of human brucellosis
From 2014 to 2020, 327,456 HB cases were reported in 
China. In general, the incidence rate of HB had shown a 
downward trend since 2014 (57,480 cases, 0.35/100,000 
people), with the lowest in 2018, when 37,467 cases 
(0.22/100,000) were reported. Thereafter, the incidence 
increased slightly, and 46,884 cases (0.28/100,000) were 
reported in 2020. From 2014 to 2020, the average annual 
incidence of brucellosis in the Inner Mongolia Autono-
mous Region was the highest (3.47/100,000), followed by 
Ningxia (2.78/100,000), Xinjiang (1.93/100,000), Shanxi 
(1.13/100,000), and Heilongjiang (1.09/100,000). There 
are 50 cities with an annual average incidence rate greater 
than 1/100,000, all of which are in northern China. The 
incidence rate ranges from 7.71/100,000 in Tacheng, 
Xinjiang Uygur Autonomous Region, to 1/100,000 in 
Chengde, Hebei Province. Other cities with high inci-
dence rates include Xing’an League (7.14/100,000), 
Xilingol League (6.13/100,000) and Tongliao City 
(5.50/100,000) in Inner Mongolia, Hami City 
(5.62/100,000) in Xinjiang, Altay Region (5.27/100,000) 
and Changji Hui Autonomous Prefecture (5.11/100,000), 
and Wuzhong City (5.32/100,000) in Ningxia (see Addi-
tional file  1). Compared with the annual average inci-
dence rate of HB in 2014–2017, the annual average 
incidence rate of HB in 2018–2020 in some regions of the 
Qinghai Tibet Plateau, most regions of Xinjiang, Shaanxi, 
Shanxi, Henan, and Hebei in the middle, and Shan-
dong, Beijing, and Tianjin in the east has significantly 
decreased. However, the incidence rate of brucellosis in 
eastern Tibet, central Gansu, and most parts of the Inner 
Mongolia Autonomous Region increased significantly 
(see Additional file 1).
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The results show an apparent variation due to the vast 
size of the country and a large number of cities. The 
highest incidence of brucellosis in China was more than 
200 times the lowest in prefecture-level cities. In terms 
of climate regions, from 2014 to 2020, the annual aver-
age incidence rate of HB in the arid region was the high-
est (1.88/100,000), followed by the continental climate 
zone (0.47/100,000). The incidence rate of temperature 
and tropical climate zones was low, at 0.048/100,000 
and 0.003/100,000, respectively. In the economic belt, 
the annual average incidence rate of HB in the northeast 
economic belt is the highest at 0.68/100,000; the sec-
ond highest in the western economic belt, 0.45/100,000; 
the incidence rate of the central economic belt and the 
eastern economic belt is relatively low (0.18/100,000 and 
0.14/100,000, respectively; Fig. 1).

Most cases occur from March to August every year, 
with May being the peak point. As the incidence of bru-
cellosis is significantly higher in northern China than 
in southern regions, we analyzed northern and south-
ern China separately in our temporal distribution study. 
From 2014 to 2020, the incidence rate of HB in northern 
China was 0.65/100,000, which was much higher than 
that in southern China (0.02/100,000). The results are 
shown in Fig.  2. Northern and southern China showed 
opposite results. The yearly decreasing trend in the inci-
dence of brucellosis in northern China is reflected in 
the results, and the incidence in southern China shows 
an increasing yearly trend. It should be noted that the 
order of magnitude of incidence rates in the North is, on 
average, approximately 40 times higher than that in the 
South, resulting in an upward trend in the South being 
greater than the downward trend in the North, although 
the slope of the trend line is the same. This is reflected 
in the results, as the average incidence rate in the North 
decreased by approximately 20% from 2014 to 2020, 
whereas this increased by nearly 100% in the South.

Correlation and seasonality between brucellosis 
and climate
Before modeling, we performed a correlation analysis of 
the data. We found that all climatic, socioenvironmental, 
and brucellosis data did not satisfy the normality condi-
tion (see Additional file 1). Therefore, it was necessary to 
exclude the Pierce correlation in the correlation analysis 
and use the Spearman and Kendall correlations in the 
rank correlation. The results are shown in Fig. 3. Taking 
the MAI of brucellosis as a base, 60% of the weather data 
were negatively correlated and 40% were positively corre-
lated. There was clear collinearity between the individual 
weather data, with some correlation coefficients being 
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even more significant in absolute values than between 
them and the MAI. Compared to the other weather fac-
tors, only MAS and MAH had Spearman correlation 
coefficients above 0.5, which lies within the moderate 
correlation interval and is more significant than the other 
factors in the subsequent modeling analysis.

The incidence of brucellosis was distinctly seasonal 
(Fig.  4), with a high incidence in spring and summer. 
Overall, the average quarterly incidence rates were win-
ter, fall, spring, and summer. The four seasons did not 
show a wide disparity, with a difference of approximately 
30% in the incidence rate per 1 million persons. Zhangji-
akou City, Hebei Province, was the top prefecture-level 
city in the eastern region in terms of incidence rate, far 
surpassing the second and subsequent cities in terms 
of incidence rate. Except for Zhangjiakou City, the inci-
dence rates of the top 10 prefecture-level cities in the 
eastern region are slightly lower than those in the cen-
tral and northern regions and far lower than those in the 
western region (average incidence rate per million peo-
ple: 15.03 in northern China, 30.23 in western China, 
13.53 in central China, 4.83 in eastern China), which is 
consistent with the distribution of animal husbandry in 
China.

Classical statistics and SARIMAX prediction models
The weather and brucellosis data used in this study 
were monthly compilations, and the social and envi-
ronmental data were annually compiled, all of which 
were time series spanning 6 years (see Fig.  2). The 

Kolmogorov–Smirnov, Shapiro–Wilk, and Jarque–Bera 
normality tests were not strictly satisfied (see Addi-
tional file  1). However, considering that the absolute 
value of the kurtosis was less than 10 and the absolute 
value of the skewness was less than 3, although the 
data were not absolutely normally distributed, they 
were basically accepted as normal distributions. Many 
models were built and screened based on the statistical 
nature and seasonality of climatic, socioenvironmen-
tal, and brucellosis data. The indicators of the models 
with excellent performances are shown in Table 1. The 
output results of these traditional statistical regression 
models were monthly brucellosis cases, and the input 
variables were climatic and socioenvironmental data.

Table  1 shows that none of the traditional statistical 
regression models fit the data very well. Stepwise, ridge, 
and robust regression have similar model superiority, 
with ridge regression having the ability to handle linear 
data. The PLS regression models’ GOF performs better 
in these models, but cannot handle data collinearity, 
which results in less objective results. Although they 
are all significant, none of the adjusted R2 exceeds 0.6 
and are unsuitable as predictive models.

Machine-learning models may exhibit better ana-
lytical performance than classical statistical regres-
sion models. SARIMAX is a machine learning model 
suitable for seasonal time-series forecasting with 
exogenous variables. In terms of model parameteriza-
tion, we first observed the brucellosis data to deter-
mine the seasonal period, S = 12 , and found that the 

Fig. 1 Spatial distribution of brucellosis in China by a climatic and b economic zones. Incidence rates are calculated for 2014–2020 per 100,000 
people. The purple line is the Qinling Mountains‑Huaihe River line divided between northern and southern China
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model p, d, q = (1, 1, 1) of all input variables was the 
most appropriate through the automatic optimization 
algorithm. Subsequently, we used the seasonal decom-
position sequence diagram to determine the P,D,Q 
values of different input variables. After obtaining these 
results, we use AIC, BIC, and HQIC to screen the opti-
mal model. The results after the application to the data-
set used in this study are shown in Fig. 5 and Table 2.

The five types of climatic data entered as exogenous 
variables in the SARIMAX model had different effects on 
the prediction results. The standard errors of MAP, MAS, 
MAH, MAWS, and MAT in the prediction model of pre-
fecture-level cities in the four geographical regions were 
0.10725, 0.1145, 0.35325, 4.8195, and 1.1295, respectively. 

Among them, the performance of the prediction model 
for MAP, MAS, and MAH was much higher than that of 
the other two climatic datasets, and the accuracy of the 
results was higher, consistent with the findings illustrated 
in Fig. 6. Most of the SARIMAX prediction models that 
we constructed passed the white noise test and proved to 
be non-autocorrelated. The results of all models satisfied 
the normal distribution and showed no heteroscedastic-
ity properties.

Figure  5c shows a significant deviation in the fore-
cast results for 2020 for Jinchang, Gansu Province, as 
reflected in the model with all climatic data as the input. 
The prediction model failed due to an unexpected brucel-
losis pandemic in Jinchang in the summer of 2020. The 

Fig. 2 Temporal distribution of brucellosis in a northern and b southern China, divided by the Qinling Mountains‑Huaihe River line. Incidence rates 
are calculated for 2014–2020 in units per 1 million people. The black line is the trend line
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average monthly incidence in July 2020 peaked in 2014–
2020, to nearly twice the second place.

Copula extreme weather model
The five types of climatic data used in this study had sig-
nificant covariance, and the rank correlation coefficients 
between them are shown in Fig. 3. These interdependent 
data in extreme weather analysis can affect the accuracy 
and objectivity of the results. For statistical significance, 
we chose to have both high performances of the predic-
tive model input variables and high-rank correlation 
coefficients for sunshine and humidity as climatic data 
for extreme weather analysis.

We first performed a copula modeling analysis of the 
overall data, regardless of region and period, to filter out 
the marginal and joint distribution functions. The results 
are presented in Table 3 and Fig. 6. Second, we performed 
year-by-year modeling for the data regardless of region, 
and the results were not significantly different. The model 
performance is presented in Table  3, and the joint dis-
tribution figures are shown in Additional file  1. Based 
on the previous results, we performed copula modeling 
analysis on year-by-year climatic data from different 
climatic regions and explored the correlation between 
extreme weather and brucellosis incidence according to 
the quantile threshold method. The results are shown in 
Fig. 7.

Table  3 shows that the most suitable marginal distri-
bution function for insolation and humidity is Weibull, 
and the copula joint distribution function is Frank. These 
results remain constant in all years. The performance 
parameters’ excellent values demonstrated the copula 

model’s positive effect in eliminating the covariance 
between climatic data, and the influence of other weather 
factors on this can be excluded in subsequent studies 
analyzing single-factor extreme weather.

We conducted a correlation analysis between copula-
processed sunshine and humidity data classified using 
the quantile threshold method and the difference in the 
incidence of brucellosis. The results showed a significant 
negative correlation between sunshine and humidity 
extremes above the 75% percentile and a trend of varia-
tion in the incidence of brucellosis. For the sunshine data, 
a moderate-to-high negative correlation is reflected in 
the arid, temperate climatic zones. For the humidity data, 
a high degree of negative correlation is reflected in the 
arid, temperate, and tropical climatic zones.

Discussion
Brucellosis is highly prevalent within the continental 
and arid climate zones of northern China, a region with 
vast grassland terrain, mild climate and temperature in 
all seasons, and a highly developed livestock industry 
in China. In recent years, the incidence of brucellosis 
in the northern region has shown an overall decreas-
ing trend annually owing to the standardization of live-
stock management and the improvement of public health 
awareness of the population. In contrast, the incidence 
of brucellosis has been on the rise in southern China as 
sheep farming has been widely adopted. Furthermore, 
the increase in incidence is facilitated by a lack of experi-
ence in preventing and treating brucellosis in the south-
ern region. The overall order of magnitude difference in 

Fig. 3 Correlation between climatic factors and incidence of brucellosis. Correlation coefficients and heat map matrices for climatic factors and 
incidence of brucellosis. a Spearman correlation, and b Kendall correlation. * In the heat map part of the figure represents P < 0.05, which indicates 
that the corresponding correlations are statistically significant. MAP refers to monthly average precipitation, MAS refers to monthly average 
sunshine, MAH refers to monthly average humidity, MAWS refers to monthly average wind speed, MAT refers to monthly average temperature and 
MAI refers to monthly average incidence
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the incidence rate with the North is large; however, the 
rising trend cannot be ignored.

The high incidence of brucellosis in spring and summer 
has a distinct seasonality. This is because Brucella is a 
human–animal bacterium closely associated with animal 
husbandry, which multiplies faster and is more biologi-
cally active in the warm season than in the cold sea-
son. In addition, cattle and sheep have a reduced rate of 

feeding and weight gain in spring and summer, resulting 
in restricted immunity and an increased risk of brucel-
losis. The high degree of covariance between socioeco-
nomic and climatic data leads to very poor performance 
and low prediction accuracy of traditional statistical 
regression models in predicting the incidence of brucel-
losis using both socioeconomic and climatic data. The 
SARIMAX model improves this significantly, is suitable 

Fig. 4 Incidence of brucellosis in different geographical regions of China by season between 2014 and 2020. The top 10 prefecture‑level cities in 
each of the 4 geographic regions using economic division criteria for the average incidence of brucellosis are presented in the Figure colored dots 
represent the quarterly average incidence of brucellosis between 2014 and 2020
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for seasonal time-series prediction, and is commonly 
used in prediction studies of various infectious diseases. 
We applied SARIMAX to predict the incidence of brucel-
losis using climatic data, and found good performance 
for precipitation, sunshine, and humidity.

A high degree of negative correlation was observed 
between the difference in year-to-year variation in sun-
shine and humidity in extreme weather and the incidence 
of brucellosis after copula processing. This is reflected 
by the fact that the higher the proportion of extreme 
weather with high sunshine or humidity values, the lower 
the incidence of brucellosis, which is most evident in arid 
and continental climatic zones. The negative correlation 
results generated in our study are consistent with those of 
other studies [30]. One possible reason is that high sun-
shine and high humidity extreme weather occur mostly 
in spring and summer, which is the time of high brucel-
losis incidence; however, Brucella has difficulty surviving 
in these extreme weather conditions.

Brucella is a human-animal bacterium that is closely 
related to animal husbandry. In the past decade, HB has 
spread throughout China. To improve the high relevance 
of the awareness of protecting human beings from the 
impact of climate change, community-based integrated 
monitoring of zoonosis is a promising way to reduce the 
impact of climate change on health. More active surveil-
lance of brucellosis in livestock and humans in China 
should be coordinated and adjusted through the use of an 
evidence-based “one health” approach [31, 32], especially 
in high-risk areas and animal husbandry.

The copula model is one of the main innovations of 
this study. Copula functions are widely used in finance 
and have been used in climatic studies in recent years 
[33–35]; however, no study has used copula models to 
analyze the relationship between epidemic and climatic 
data. Using the copula function, we filtered and modeled 
the marginal and joint distributions between sunshine 
and humidity, which could also be applied to any other 
climatic data. Furthermore, we innovatively analyzed the 
impact of extreme weather on the incidence of brucel-
losis and produced scientifically valid results that other 
studies can corroborate. Finally, we built a wide variety 
of statistical regression models based on socioeconomic 
and climatic data to predict the incidence of brucellosis, 
which, together with the machine learning SARIMAX 
model, could provide an effective model reference for 
similar brucellosis prediction studies.

Our study has some limitations. Brucellosis is a 
zoonotic disease. The dermal, gastrointestinal, and res-
piratory modes of transmission result in the incidence of 
brucellosis in each prefecture-level city, which is influ-
enced by population migration. However, the popula-
tion migration data were not fed into our model because 
population migration in more than 200 prefecture-level 
cities would exponentially degrade the computational 
performance of the model and greatly increase the time 
and space complexity. In addition, because of the sto-
chastic nature of the copula joint distribution function 
for concatenation, this study only screened out the opti-
mal copula function for climatic data, without using the 

Table 1 Classical statistical model performance summary

Predictive models Adj R2 Effectiveness indicator P value Collinearity indicator

Stepwise Regression 0.489 F(9,13,089) = 1393.606 All variables P < 0.01 D −W value = 0.788

Ridge Regression 0.481 F(8,13,090) = 1516.354 All variables P < 0.01 NA  

Robust Regression 0.488 F(9,13,089) = 1389.404 All variables P < 0.01 NA  

Quartile Regression (25%) 0.275 Y =  − 0.406 All variables, except geo‑
graphical region P < 0.01

NA  

Quartile Regression (50%) 0.302 Y = 0.131 P < 0.01 NA  

Quartile Regression (75%) 0.320 Y = 0.710 P < 0.01 NA  

PLS regression (1 principal component) 0.525 Qh
2 = 1.000 P < 0.05 PRESS = 4.081

PLS regression (2 principal component) 0.544 Qh
2 =  −0.119 P < 0.05 PRESS = 4.021

PLS regression (3 principal component) 0.552 Qh
2 =  −0.176 P < 0.05 PRESS = 4.055

PLS regression (4 principal component) 0.555 Qh
2 =  −0.225 P < 0.05 PRESS = 4.149

(See figure on next page.)
Fig. 5 Predicted MAI of brucellosis in a Baicheng (in Northeast China), b Datong (in Central China), c Jinchang (in Western China), and d 
Zhangjiakou (in Eastern China) based on SARIMAX model. The four prefecture‑level cities in the figure are the cities with the highest average 
incidence of brucellosis among the four major economic regions in China that are used as typical data for analysis. The data from 2015 to 2019 was 
used as the model training set, and the data from 2020 was the prediction set. The black line represents the data as a comparison in the prediction 
set. The colored lines represent the SARIMAX results after different climatic data are input as exogenous variables
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Fig. 5 (See legend on previous page.)
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Fig. 6 Copula a three‑dimensional contours and b two‑ dimensional joint distribution of sunshine and humidity. The range of all axes is 0–1, 
representing probability values 0–100%. MAS refers to monthly average sunshine and MAH refers to monthly average humidity

Table 3 Sunshine and humidity copula model performance, 2014–2020

Climatic variables Function 2014 2015 2016 2017 2018 2019 2020 2014–2020

Sunshine edge distribution R2 Frechet 0.978 0.977 0.976 0.977 0.965 0.956 0.992 0.979

Gumbel 0.979 0.980 0.976 0.977 0.965 0.965 0.991 0.979

Weibull 0.995 0.997 0.994 0.997 0.991 0.986 0.997 0.997

Humidity edge distribution R2 Frechet 0.899 0.886 0.887 0.915 0.890 0.917 0.894 0.906

Gumbel 0.899 0.886 0.893 0.915 0.891 0.927 0.894 0.903

Weibull 0.975 0.970 0.965 0.973 0.958 0.985 0.984 0.975

Copula Joint distribution function AIC ( 104) Clayton −1.050 −0.943 −0.980 −1.150 −1.035 −1.271 −0.753 −7.786

Frank −1.486 −1.333 −1.338 −1.387 −1.365 −2.053 −1.308 −10.312

Gumbel −1.314 −1.253 −1.256 −1.316 −1.322 −1.913 −1.270 −9.648

Fig. 7 Trends in the sunshine and humidity extremes and incidence of brucellosis in a arid and continental, b temperate and tropical climatic 
zones after copula‑processing. We normalized the differences due to order‑of‑magnitude gaps, which may thus lead to an unclear presentation in 
the figure; rs represents the Pearson correlation coefficient for the year‑to‑year difference between sunshine and the incidence of brucellosis in the 
corresponding climate zone; rh represents humidity. The rationale for selecting Pearson for the correlation coefficients is that the data all conform 
to a normal distribution (see Additional file 1) but have not been tested for statistical significance because the amount of data is too small (n = 6) to 
qualify for the test
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joint distribution model for further analysis or generating 
relevant conclusions. In addition, because of the uncer-
tainty induced when copula joint distribution functions 
are connected, this study only screened the optimal cop-
ula joint distribution function applicable to climatic data, 
without using the joint distribution model for further 
analysis or generating relevant conclusions.

Conclusions
In this study, spatial and temporal analyses revealed that 
HB had obvious seasonality and was highly prevalent in 
northern China within the arid and continental climate 
zone, with an annually decreasing trend. The southern 
region showed an increasing trend year by year, and cli-
matic data were highly correlated with the incidence of 
brucellosis in China. Model comparisons indicate that 
traditional statistical regression models do not perform 
well in predicting the incidence of brucellosis using soci-
oeconomic and climatic data, whereas machine learning 
SARIMAX models are more applicable. In the copula 
extreme weather model, we screened Weibull and Frank 
as the optimal marginal and joint distribution functions 
for analyzing climatic data and found a high degree of 
negative correlation between high numerical extremes of 
sunshine and humidity after quantile threshold classifi-
cation and the difference in year-to-year variation in the 
incidence of brucellosis.
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