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Abstract 

Background Clonorchiasis and opisthorchiasis, caused by the liver flukes Clonorchis sinensis and Opisthorchis viverrini 
respectively, represent significant neglected tropical diseases (NTDs) in Asia. The co‑existence of these pathogens 
in overlapping regions complicates effective disease control strategies. This study aimed to clarify the distribution 
and interaction of these diseases within Southeast Asia.

Methods We systematically collated occurrence records of human clonorchiasis (n = 1809) and opisthorchiasis 
(n = 731) across the Southeast Asia countries. Utilizing species distribution models incorporating environmental 
and climatic data, coupled machine learning algorithms with boosted regression trees, we predicted and distin‑
guished endemic areas for each fluke species. Machine learning techniques, including geospatial analysis, were 
employed to delineate the boundaries between these flukes.

Results Our analysis revealed that the endemic range of C. sinensis and O. viverrini in Southeast Asia primarily spans 
across part of China, Vietnam, Thailand, Laos, and Cambodia. During the period from 2000 to 2018, we identified C. 
sinensis infections in 84 distinct locations, predominantly in southern China (Guangxi Zhuang Autonomous Region) 
and northern Vietnam. In a stark contrast, O. viverrini was more widely distributed, with infections documented 
in 721 locations across Thailand, Laos, Cambodia, and Vietnam. Critical environmental determinants were quantita‑
tively analyzed, revealing annual mean temperatures ranging between 14 and 20 °C in clonorchiasis‑endemic areas 
and 24–30 °C in opisthorchiasis regions (P < 0.05). The machine learning model effectively mapped a distinct demarca‑
tion zone, demonstrating a clear separation between the endemic areas of these two liver flukes with AUC from 0.9 
to1. The study in Vietnam delineates the coexistence and geographical boundaries of C. sinensis and O. viverrini, reveal‑
ing distinct endemic zones and a transitional area where both liver fluke species overlap.

Conclusions Our findings highlight the critical role of specific climatic and environmental factors in influencing 
the geographical distribution of C. sinensis and O. viverrini. This spatial delineation offers valuable insights for inte‑
grated surveillance and control strategies, particularly in regions with sympatric transmission. The results underscore 
the need for tailored interventions, considering regional epidemiological variations. Future collaborations integrating 
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eco‑epidemiology, molecular epidemiology, and parasitology are essential to further elucidate the complex interplay 
of liver fluke distributions in Asia.

Keywords Liver fluke, Clonorchiasis, Opisthorchiasis, Clonorchis sinensis, Opisthorchis viverrine, Southeast Asia, 
Machine learning, Ecological study

Background
The prevalence and infection rates of liver fluke diseases 
are high across Asian regions, particularly notable in 
the Mekong River Basin. Those diseases caused by Clo-
norchis sinensis and Opisthorchis viverrini are highly 
prevalent food-borne trematodiasis (FBTs) [1, 2]. Exten-
sive research indicates that clonorchiasis is widespread 
in parts of Russia, Republic of Korea, southern and north-
eastern China, extending its endemicity to the northern 
provinces of Vietnam, exhibiting localized epidemics [3]. 
In contrast, opisthorchiasis primarily affects the lower 
Mekong regions, including Thailand, Laos, Cambodia, 
and the central and southern provinces of Vietnam [4]. 
Notably, Vietnam is the only country where both types 
of human liver fluke infections co-exist [5, 6]. This co-
endemicity presents unique public health challenges and 
necessitates targeted intervention strategies to effectively 
address the burden of these parasitic infections.

First documented in Vietnam in 1887, C. sinensis infec-
tion was followed by the discovery of O. viverrini trans-
mission in central Vietnamese provinces in 1994 [7]. A 
1992 epidemiological survey in Phu Yen Province in cen-
tral Vietnam found C. sinensis prevalence ranging from 
23.5 to 31.0% in northern Nam Dinh Province, with O. 
viverrini prevalence up to 43.5% in males and 29.4% in 
females, concentrated among 40–59-year-olds [8]. Subse-
quently, reports of both liver fluke infections have accu-
mulated in Vietnam. As the only country endemic for 
both species, Vietnam provides an opportunity to eluci-
date the interface between their geographic distributions 
from an epidemiological perspective [9].

Whereas C. sinensis is distributed across parts of 
Russia, Republic of Korea, parts of China and north-
ern Vietnam, O. viverrini is concentrated in the lower 
Mekong  River Basin of Thailand, Laos, Cambodia, and 
central-southern Vietnam [9]. Co-endemicity of both 
fluke species has been uniquely observed in Vietnam, 
but early epidemiological data are limited by diagnostic 
constraints [10]. C. sinensis was initially reported from 
northern Vietnamese provinces only, while O. viver-
rini was restricted to central endemic foci  of Vietnam. 
Although O. viverrini has been reported in cats in south-
ern Vietnam, no human cases were documented [11]. 
Diagnosis, based on microscopic egg morphology in the 
1970s–1980s likely resulted in substantial overestimates 
of national clonorchiasis prevalence, as other intestinal 

trematode eggs may have been misclassified as those of 
C. sinensis. Updated epidemiological assessments using 
accurate diagnostics are needed to delineate the endemic 
boundaries and disease burden posed by each liver fluke 
species across different regions, particularly in Vietnam.

The life cycles of C. sinensis and O. viverrini are simi-
lar, with humans and some other mammals (pigs, cats, 
dogs and rodents) as the definite hosts and freshwater 
snails and fish as two intermediate hosts following each 
other in that order [12]. Human infections of both flukes 
are acquired by consuming undercooked freshwater fish 
harboring infective metacercariae. However, the first 
intermediate hosts differ between the species. The spatial 
distribution of the two fluke infections is heavily influ-
enced by the presence of populations of susceptible snail 
species and suitable environmental conditions [13, 14]. 
Elucidating the intermediate host profiles and environ-
mental limits of each liver fluke species is imperative to 
understand their endemic boundaries and opportunities 
for sustained disease control.

It remains unclear whether clear boundaries exist in 
the endemic distributions of the two parasites, and which 
factors that have resulted in their segregated geographic 
patterns[5]. Predicted distribution maps for clonorchiasis 
and opisthorchiasis exist, but a proper, integrated analy-
sis investigating the geographic boundaries between the 
two trematodiases has yet to be conducted. Defining 
the specific ecologic limits and spatial overlap of these 
two helminths is imperative to devise integrated control 
strategies that account for their sympatry across certain 
endemic regions. A comprehensive approach combining 
predictive mapping and delineation of the niche bounda-
ries would provide novel insights into their distinct epi-
demiology in Asia.

The application of machine learning methods for dis-
ease distribution prediction represents a major focus in 
this field. Such approaches primarily address the classi-
fication problem of delineating disease ranges based on 
input variable patterns using algorithms that identify 
relationships within data to categorize outcome or input 
variables[15]. Machine learning techniques comprise 
supervised learning, in which models are trained on 
known input–output variable pairs to predict outcomes 
for new inputs (e.g. logistic regression), and unsuper-
vised learning, which uncovers inherent structure within 
existing data to inform clustering[16]. Given compiled 
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databases of geolocated C. sinensis and O. viverrini 
human infection records across the Mekong River Basin, 
we applied machine learning models to elucidate the 
niche boundaries between the two liver flukes and char-
acterize key determinants of their divergent endemic pat-
terns. Since algorithms trained on ecological and social 
data can provide novel insights unavailable from tradi-
tional statistical approaches, we applied such techniques 
for comparative predictive mapping of clonorchiasis and 
opisthorchiasis distributions. By integrating epidemio-
logical perspectives from the literature with computa-
tional modelling techniques, we aimed to elucidate the 
complex and divergent ecology of these two liver fluke 
species. The primary aim is to compile location-specific 
cases of infections to input into ecological niche mod-
elling by machine learning techniques, aiming to map 
transmission patterns rather than quantify infection 
prevalence rates. Then secondary aim is to document 
infection risk factors, identifying potential influences 
on the models to understand the relationship between 
environmental variables and geo-locations. This com-
prehensive approach allows for a detailed comparison of 
environmental conditions that support the sustenance of 
these parasites in endemic areas.

Methods
Study design
We conducted an integrative modelling study using a 
mix of data sources to map the niche boundaries and 
model the divergent epidemiology of clonorchiasis and 
opisthorchiasis in Asia. The integration of multiple data 
modalities aimed to provide novel insights into the dif-
fering ecology and transmission dynamics of these two 
liver fluke infections. The modelling framework incorpo-
rated three main components: (1) a systematic literature 
review of prior epidemiological studies reporting preva-
lence and risk factors; (2) compilation of environmental, 
socioeconomic, and disease burden data from regional 
databases; and (3) implementation of species distribution 
modelling algorithms to delineate environmental niches. 
The models enabled predictive mapping of each disease’s 
ecological niche across Asia based on inferred asso-
ciations between disease occurrence and environmental 
conditions.

Data sources
Literature review
We systematically searched major biomedical, regional, 
and grey literature databases, including PubMed, Sco-
pus, EBSCOhost, Web of Science, Cochrane Library, 
Cairn, OpenGrey, and Scielo from database inception 
through December 2018. The search strategy utilized 
Medical Subject Headings (MeSH) terms including 

["Clonorchis sinensis", "Clonorchis sinenses", "Clonorchia-
sis", "Opisthorchis sinensis", "Opisthorchis sinenses","Liver 
fluke"], AND ["Asia", "Epidemiology", "Prevalence"], 
and relevant variants in [All Fields]. Equivalent subject 
headings and keywords were used for searches in other 
databases.

Inclusion criteria were cross-sectional surveys, cohort 
studies, or case–control studies reporting primary 
prevalence data or risk factors for clonorchiasis and/or 
opisthorchiasis in Asia. Studies were required to have 
laboratory diagnostic testing for infection.

Exclusion criteria were case reports, reviews, opin-
ion pieces, policy documents, animal studies, and stud-
ies without primary prevalence data. Two independent 
reviewers screened all titles, abstracts, and full texts for 
eligibility. Data on prevalence, diagnostics, location, sam-
ple size, demographics, and risk factors were extracted 
from included studies into a standardized form using 
Zotero version: 6.0.31 (The Roy Rosenzweig Center for 
History and New Media, Fairfax, USA). Any discrepancy 
was resolved by consensus.

This comprehensive literature search aimed to com-
pile all relevant epidemiological data on clonorchiasis 
and opisthorchiasis prevalence and risk factors needed to 
inform model development.

Databases
For C. sinensis infection data in the Mekong River region, 
we supplemented the literature review by compiling pri-
mary data on population infection rates from databases 
in Vietnam and Guangxi Zhuang Autonomous Region of 
China. Cross-sectional surveys, conducted between 2000 
and 2018 in Vietnam, were systematically searched to 
extract geolocated presence/absence data based on faecal 
egg detection at the survey point and the regional level. 
Infection status was coded as Yes (positive) or No (nega-
tive) for C. sinensi in the databases.

For Guangxi Zhuang Autonomous Region, China, pop-
ulation-level data on C. sinensis infections were obtained 
from the 3rd National Survey on Key Parasitic Diseases 
conducted between 2014 and 2016, which covered 31 
provinces (municipalities, autonomous regions) in rural 
and urban areas of China. Apart from C. sinensis, testing 
included tapeworms, intestinal protozoa and other key 
parasitic infections via faecal examination in the sam-
pled population. A stratified cluster sampling method 
was used, classifying China into 5 endemic zones for C. 
sinensis and sampling within each zone. All individuals in 
the selected clusters underwent testing. Stool specimens 
were examined by the Kato-Katz thick smear technique 
using two smears per specimen to detect intestinal hel-
minth eggs.
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By compiling primary epidemiological records from 
these standardized national surveys in China and Viet-
nam, we obtained geolocated C. sinensis infection data 
needed to parameterize niche modelling and epidemio-
logical comparisons between the two liver flukes. The 
original data of  O. viverrini  infection in endemic coun-
tries of Southeast Asia is extracted from the 113 stud-
ies and combined with the reported data from WHO 
(Department of Neglected tropical diseases of WHO 
Western Pacific), and details of system review screening 
were shown in Additional file 1.

Environmental data
We compiled 26 natural climatic, and socio-cultural 
predictor variables, including distance to water bodies, 

elevation, slope, normalized difference vegetation index 
(NDVI), land cover, 19 bioclimatic variables (Bio1–
Bio19), human influence index (HII), human footprint 
index (HFP), based on the variables used in Zhao’s study 
[17], and Zheng’s study[18] for modelling with liver fluke 
and snails. We additionally included local habit of raw 
fish consumption-eating as a predictor variable. Our 
approach was to use a comprehensive set of environmen-
tal and socio-economic factors to capture these fine-scale 
differences. Factors may similarly increase overall risk, 
but specific values pinpoint geographic boundaries. The 
machine learning framework integrated with ecological 
data successfully learned these distinct signatures, ena-
bling accurate discrimination for mapping. All data-
bases used for these 26 predictor variables are shown in 
Table 1.

Topographic variables, such as water distance, eleva-
tion, slope, NDVI, and land cover were extracted from 
the Shuttle Radar Topography Mission (SRTM) at 
5  km-resolution (http:// srtm. csi. cgiar. org/). Water dis-
tance calculates the Euclidean distance from each grid 
cell to the nearest wetland, including lakes, wetlands, 
and river floodplains, representing proximity to water 
bodies (in meters). Elevation denotes altitude above the 
mean sea level (in meters). Slope describes the rate of 
change in elevation. NDVI is an index of green vegeta-
tion density ranging from -1 to 1, with values below 0 
indicating water, cloud, snow; near 0 barren land; and 
above 0 vegetation cover increasing with density. Land 
cover was defined using the Moderate Resolution Imag-
ing Spectroradiometer (MODIS) MCD12Q1 product 
(https:// lpdaac. usgs. gov/ produ cts/ mcd12 c1v006/), 
aggregated and reprojected to match the 15-class Uni-
versity of Maryland scheme.

Geospatial data layers were extracted for each liver 
fluke survey location to assess environmental factors 
associated with C. sinensis and O. viverrini transmis-
sion. Univariate comparisons were conducted between 
survey points for each variable using Mann–Whitney U 
tests.

Climatic data were obtained from WorldClim v.1.4 at 
5  km-resolution (http:// www. world clim. org), interpo-
lated from global weather station data from 1955 to 2000 
for China. The 19 bioclimatic variables represent annual 
trends, seasonality, and limiting factors calculated from 
monthly temperature and rainfall. These are more biolog-
ically meaningful than temperature/rainfall alone.

To represent anthropogenic effects on the environ-
ment, we extracted two human influence indices: HII 
quantifies direct human pressures on ecosystems using 
population density, built environments, transportation 
networks, land use/land cover, and nightlights (https:// 
sedac. ciesin. colum bia. edu). HII ranges 0–64, with higher 

Table 1 Environmental and climatic variables influencing liver 
fluke infection

Variables Descriptions

Water distance (m) Distance to water bodies

Elevation (m) Elevation

Slope Slope

NDVI Normalized Difference Vegetation 
Index

Land cover Land cover

HII Human influence index

HFP Human footprint

BIO1 (℃) Annual mean temperature

BIO2 (℃) Mean diurnal range (Mean 
of monthly (max temp–min temp))]

BIO3 (%) Isothermality (BIO2/BIO7) (× 100)]

BIO4 (%) Temperature seasonality (standard 
deviation × 100)]

BIO5 (℃) Max temperature of warmest month

BIO6 (℃) Min temperature of coldest month

BIO7 (℃) Temperature annual range (BIO5‑
BIO6)

BIO8 (℃) Mean temperature of wettest 
quarter

BIO9 (℃) Mean temperature of driest quarter

BIO10 (℃) Mean temperature of warmest 
quarter

BIO11 (mm) Mean temperature of coldest 
quarter

BIO12 (mm) Annual precipitation

BIO13 (mm) Precipitation of wettest month

BIO14 (mm) Precipitation of driest month

BIO15 Precipitation seasonality (Coefficient 
of Variation)

BIO16 (mm) Precipitation of wettest quarter

BIO17 (mm) Precipitation of driest quarter

BIO18 (mm) Precipitation of warmest quarter

BIO19 (mm) Precipitation of coldest quarter

http://srtm.csi.cgiar.org/
https://lpdaac.usgs.gov/products/mcd12c1v006/
http://www.worldclim.org
https://sedac.ciesin.columbia.edu
https://sedac.ciesin.columbia.edu
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values indicating greater human environmental impacts. 
HFP shows relative human pressure, with red indicating 
more intense activity.

Eating habits of raw fish
The study considered the use of data on the consump-
tion of raw fish because eating raw or undercooked fish 
is a well-known risk factor for infections with C. sinen-
sis and O. viverrini. These liver flukes can infect humans 
who consume freshwater fish containing the larval stages 
of the parasites. This dietary habit directly relates to the 
transmission dynamics of these parasites, making it a 
critical factor to examine in understanding the geograph-
ical distribution and risk of infection.

By understanding where and how often people con-
sume raw fish, we define the eating habits with refer-
ence to raw fish were recorded for mapping sections by 
provinces and municipalities in all countries based on 
literature review, coded as 1 if present the eating habits 
with raw fish or 0 if absent the eating habits with raw 
fish. Also, we collecting data from affected populations 
through direct questioning about their dietary hab-
its through the help of local disease control centres and 
experts from each country as we have consulted with, 
specifically the dietary habits for consumption of raw or 
undercooked freshwater fish with specific municipali-
ties areas. Finally, provincial polygons were rasterized to 
assign presence across each province.

Assessment and extraction of variable data
The compiled databases were separated into two groups 
based on human infection with C. sinensis and O. viver-
rini for comparative analysis. We statistically sum-
marized and mapped the locations of the two parasite 
infections. For normally distributed continuous variables, 
means and standard deviations were calculated, with 
t-tests used to compare groups. As land cover comprised 
15 categorical classes, non-normal variables were sum-
marized using median and interquartile range (IQR) and 
compared between groups with non-parametric tests.

All data processing and analyses were conducted in R 
V.4.0.2 (Lucent Technologies, Jasmine Mountain, USA). 
Variables were assessed for collinearity and eliminated if 
the variance inflation factor (VIF) exceeded 5. We then 
used random forest (RF) models to rank predictor impor-
tance based on mean decrease in accuracy when excluded 
from the models. The top 10 most important variables for 
each parasite were retained for further niche modelling. 
This process filtered the database variable data to retain 
only relevant non-redundant predictors characteriz-
ing the fundamental and realized niches of the two liver 
flukes under study. It also allowed statistical comparisons 

to identify similarities and differences in their ecological 
and environmental constraints. These ‘curated’ database 
variable values provide the inputs for ensuing distribu-
tion modelling and mapping of the transmission risk.

Model development
We developed predictive models to classify and dis-
criminate human infections of O. viverrini versus C. 
sinensis based on environmental variables, following 
the framework Y = f(x). The binary response variable Y 
would indicate O. viverrini (Y = 0) or C. sinensis (Y = 1) 
infection, the aim was delineating the potential transi-
tion zone where the probability for both species shifts 
between 0 and 1, indicating possible co-endemicity. The 
predictor variables (X) comprised 26 environmental, 
climatic and socio-cultural factors. To account for class 
imbalance, we used the SMOTE algorithm from the 
DMwR package to synthesize additional minority class 
examples. The models were constructed and evaluated 
using the Caret package in R. To enable consistent com-
parison across algorithms and assessment of variable 
importance, we selected six commonly used machine-
learning classification methods to model environmental 
suitability for O. viverrini and C. sinensis transmission: 
linear regression (LM), decision trees (DT), neural net-
works (NNET), RF, gradient boosting machines (GBM) 
and extreme gradient boosting (XGBOOST). Details on 
each algorithm can be found at the Caret documenta-
tion (https:// topepo. github. io/ caret/ index. html). All 
models were trained using tenfold cross-validation 
repeated 5 times, with hyperparameter tuning to opti-
mize model performance. Model fitting performance, 
prediction accuracy, variable contributions, marginal 
response plots, and projected distribution maps were 
analysed and evaluated for each approach.

The fitted machine learning models were applied to an 
independent testing dataset to evaluate generalizability. 
Liver fluke presence/absence predictions were gener-
ated for each testing location and compared to observed 
outcomes to assess model discrimination. Testing perfor-
mance was quantified using AUC, accuracy, Kappa value, 
sensitivity, and specificity metrics.

We evaluated and compared models based on the area 
under the receiver operating characteristic curve (AUC) 
by sensitivity, specificity, and Cohen’s Kappa statistic. The 
optimal model was selected based on having the highest 
cross-validated AUC. This model was then finalized by 
refitting on the full dataset to generate the final predic-
tion equation.

Model development aimed to maximize discrimina-
tion accuracy in predicting O. viverrini versus C. sinensis 
infections based on ecological and environmental factors 

https://topepo.github.io/caret/index.html
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relevant to their transmission dynamics and geographic 
distributions. The resulting model could then be applied 
to mapping transmission risk and predicting changes 
under climate change scenarios. Model development and 
validation followed a rigorous workflow for tuning, test-
ing and application. The compiled database of values for 
the two infections was randomly split into a training set 
(70% of the data) for model calibration and a testing set 
(30% of the data) for independent evaluation. The train-
ing data underwent fivefold cross-validation, whereby the 
data were divided into 5 equal partitions. In each fold, 
models were fitted on 4 partitions and predictions gen-
erated for the held-out fold. This process was repeated, 
holding out each partition in turn to identify the optimal 
hyperparameters that minimized the cross-validation 
error. This was done as cross-validation prevents model 
overfitting and provides a realistic estimate of perfor-
mance on new data.

Following cross-validation-based tuning, the final mod-
els were refit on the full training set using optimal hyper-
parameters. Model skill was quantified on the training set 
using the AUC as mentioned above. The tuned models 
were then applied to the previously held-out testing set to 
evaluate performance on new data. Variable importance 
was calculated by excluding each predictor and quantify-
ing loss in testing AUC. Marginal effects of key predic-
tors were generated from the finalized models to quantify 
variable-outcome relationships. Model predictions were 
mapped across the study region based on environmental 
inputs to predict risk areas for each species. Finally, an 
ensemble approach was taken by integrating predictions 
across algorithms to leverage model strengths.

Model assessment and prediction
Model calibration was assessed using calibration plots to 
evaluate agreement between predicted and observed out-
comes. Classification metrics including AUC, accuracy, 
Kappa  value, specificity, and sensitivity were calculated 
at the optimal probability threshold to quantify model 
discrimination ability. Variable importance was deter-
mined using the varImp function in the Caret package, 
which quantifies the decrease in model AUC with vari-
able exclusion. This approach includes all predictors and 
ranks importance based on change in performance. Mar-
ginal effects of key variables were visualized using partial 
dependence plots (PDPs) from the pdp package. PDPs 
show the functional relationship between a predictor and 
the outcome while accounting for effects of other vari-
ables. To reduce computation time, PDPs were generated 
for the top three important variables.

The finalized models were applied to predict the prob-
ability of C. sinensis infection across gridded environ-
mental data in China’s Guangxi Zhuang Autonomous 
Region and the south-eastern Laos, Thailand, Cambodia, 
and Vietnam Regions. Predictions were mapped to visu-
alize the geographic distribution of estimated risk. Any 
predictions of C. sinensis in Guangxi  Zhuang Autono-
mous Region of China were considered erroneous given 
known distributions. To delineate species boundaries, we 
focused on areas of Vietnam and Laos where both spe-
cies are endemic. Grid cells with a predicted probabil-
ity of C. sinensis of 100% were classified as high risk for 
that species. Areas with intermediate probabilities of 0–1 
were considered potential hybrid zones with sympatric 
transmission.

Results
Geographic distribution
This study found the Southeast Asian range of O. viver-
rini and C. sinensis infections to be cantered in China, 
Vietnam, Thailand, Laos, and Cambodia (Prediction 
map was shown Figure1.png in https:// github. com/ james 
jin63/ Liver_ fluke/). In the study period (2000–2018), C. 
sinensis infections were identified in 84 places extracted 
from data in 15 studies, with a concentration in south-
ern China (Guangxi Zhuang Autonomous Region) and 
northern Vietnam. In contrast, O. viverrini infections 
were seen in 721 places, extracted from 113 studies, with 
clusters appearing across Thailand, Laos, Cambodia, 
and Vietnam. These spatial patterns align with known 
endemic zones based on past national surveys and 
reported cases. However, our database compiled a larger 
number of geocoded epidemiological studies that pro-
vided mapping with higher resolution of local prevalence.

Environmental associations
Univariate comparisons conducted between survey 
points for elevation variable showed median eleva-
tion to be significantly lower in C. sinensis locations 
(median = 35.44  m, IQR: 12.2–98.7) compared to O. 
viverrini ones (median = 159.5  m, IQR: 45.6–212.4; 
P < 0.0001). No significant differences were found for 
slope, Bio10, Bio8, or Bio16 (See Table 2).

Model fitting with training data
Based on the compiled training dataset, the six algo-
rithms learned associations between environmental 
predictors and liver fluke presence/absence to develop 
fitted models. All models achieved excellent fitting 
performance on the training data with AUC, accuracy, 
Kappa  value, sensitivity, and specificity approaching 1 
(NNET range: 0.981–0.998). (Table 3).

https://github.com/jamesjin63/Liver_fluke/
https://github.com/jamesjin63/Liver_fluke/
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Model predictions on independent testing data
All models achieved excellent prediction accuracy on 
the testing data with AUC, accuracy, kappa value, sen-
sitivity, and specificity approaching 1 (NNET range: 
0.991–0.996) (Table 4).

Key environmental drivers
The machine-learning models identified Bio4 and Bio3 as 
consistently influential predictors of liver fluke presence 
across techniques (Fig. 1), agreeing with their known role 
in snail habitat suitability.

Marginal variable effects
Based on the fitting and prediction results, all models 
except NNET showed good performance. Using the LM 
model, the variables Bio8, Bio1, and Bio18 were selected 
for partial dependence plots based on contribution over 
75%. For the RF model, Bio4 and Bio3 were selected. The 
plots visualize the dependence between variables and 
predicted probability of liver fluke of C. sinensis pres-
ence (Y = 1). From Fig. 2, results showed Bio8 had a pre-
dicted probability of 0.987 at 22  °C, decreasing as Bio8 
increased. Probability of presence increased with Bio1, 
with values below 0.1 when Bio1 = 22.4  °C and reaching 
1 when Bio1 > 27 °C. For Bio18, predicted probability was 

Table 2 Comparative ecological analysis of Clonorchis sinensis and Opisthorchis viverrini infections of environmental, climatic, and 
socio‑economic variables

Continuous data are presented as mean ± standard deviation; *represents the median (interquartile range, IQR with Q1,Q3); Elevation, Height above sea level, in 
meters (m); Slope, Steepness or incline of land, in degrees (°); NDVI, normalized difference vegetation index; Land cover, Type of land cover, categorized; HII, human 
influence index; HFP, human footprint index; Water distance, Distance to nearest water body, in meters (m); BIO1, annual mean temperature (°C); BIO2, mean diurnal 
temperature range (°C); BIO3, temperature annual range (% of mean); BIO4, temperature seasonality (standard deviation); BIO5, maximum temperature of the 
warmest month (°C); BIO6, minimum temperature of the coldest month (°C); BIO7, annual temperature range (°C); BIO8, mean temperature of the wettest quarter (°C); 
BIO9, mean temperature of the driest quarter (°C); BIO10, mean temperature of the warmest quarter (°C); BIO11, mean temperature of the coldest quarter (°C); BIO12, 
annual precipitation (mm); BIO13, precipitation of the wettest month (mm); BIO14, precipitation of the driest month (mm); BIO15, precipitation seasonality (coefficient 
of variation); BIO16, precipitation of the wettest quarter (mm); BIO17, precipitation of the driest quarter (mm); BIO18, precipitation of the warmest quarter (mm); 
BIO19, precipitation of the coldest quarter (mm)

Variables Liver fluke P value

C. sinensis (N = 84) O. viverrini (N = 721)

Elevation* 35.44 (3.12, 177.00) 160.00 (108.13, 238.37)  < 0.001

Slope* 0.73 (0.14, 4.80) 0.62 (0.32, 1.68) 0.593

Land cover* 12.00 (9.00, 12.00) 12.00 (8.00, 12.00) 0.003

NDVI* 0.46 (0.37, 0.65) 0.53 (0.42, 0.70) 0.003

HII 29.50 ± 9.36 22.00 ± 7.61  < 0.001

HFP 45.98 ± 14.57 33.77 ± 11.58  < 0.001

Water distance* 1033.20 (168.53, 5872.07) 3925.45 (544.82, 8706.90) 0.002

Bio1 22.35 ± 1.70 26.06 ± 1.78  < 0.001

Bio2 6.67 ± 0.83 9.78 ± 1.30  < 0.001

Bio3 32.46 ± 2.26 55.21 ± 3.77  < 0.001

Bio4 522.83 ± 85.88 215.00 ± 53.04  < 0.001

Bio5 31.90 ± 1.10 34.19 ± 2.28  < 0.001

Bio6 11.28 ± 3.22 16.39 ± 2.65  < 0.001

Bio7 20.62 ± 2.93 17.80 ± 2.67  < 0.001

Bio8 27.27 ± 1.73 26.97 ± 1.33 0.052

Bio9 16.20 ± 2.12 23.36 ± 2.40  < 0.001

Bio10 28.14 ± 1.14 28.34 ± 1.61 0.269

Bio11 15.48 ± 2.71 23.07 ± 2.31  < 0.001

Bio12 1684.77 ± 150.96 1566.70 ± 470.23 0.022

Bio13 338.17 ± 51.37 332.66 ± 131.55 0.704

Bio14 26.02 ± 9.87 4.40 ± 5.27  < 0.001

Bio15 80.11 ± 8.22 89.44 ± 9.70  < 0.001

Bio16 899.33 ± 111.56 858.59 ± 335.65 0.27

Bio17* 95.83 (78.34, 112.29) 20.50 (17.91, 27.72)  < 0.001

Bio18* 772.30 (736.63, 820.49) 367.71 (289.75, 534.85)  < 0.001

Bio19 105.08 ± 38.85 49.31 ± 55.53  < 0.001
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above 0.87, increasing to over 0.9 when Bio18 exceeded 
750 mm. Bio3 exhibited increasing predicted probability 
with values, with plateau creation at 0.93 when Bio3 > 50. 
In contrast, as Bio4 increased, predicted probability 
declined. These patterns align with known biological 
requirements of snail intermediate hosts and transmis-
sion potential. The marginal response plots aid interpre-
tation of complex model dynamics.

Model predictions
The fitted machine-learning models were used to esti-
mate the geographic distribution of liver fluke infection 
risk across the Mekong River basin and Guangxi Zhuang 
Autonomous Region of  China (Prediction of liver fluke 
infection risk map was shown Figure  2.png  in https:// 
github. com/ james jin63/ Liver_ fluke/). Each model gen-
erated a predicted probability surface for liver fluke 
presence at each location based on the input variables. 
All models successfully delineated areas of higher pre-
dicted risk for C. sinensis versus O. viverrini. However, 
the NNET and RF models projected some C. sinen-
sis presence in northern Vietnam and southern  China 
(Guangxi Zhuang Autonomous Region). The DT, GBM, 
and XGBOOST models limited O. viverrini suitability to 
western Guangxi Zhuang Autonomous Region of China, 

while the LM model predicted only C. sinensis across the 
all Guangxi Zhuang Autonomous Region of China.

Delineation of boundaries
To further investigate the geographic boundaries 
between C. sinensis and O. viverrini, the study area was 
narrowed to Vietnam  and Laos. Of the model predic-
tions, only the RF results met all simulated conditions 
for delineating species risk. The RF model generated 
a predicted risk map for C. sinensis and O. viverrini in 
Vietnam and Laos (Prediction map was shown Figure 3.
png  in https:// github. com/ james jin63/ Liver_ fluke/). 
Three types of regions have been classified in Figure  3.
png, including: Region A (in red) indicated a higher pre-
dicted risk for O. viverrini transmission, with a focus in 
central and southern Vietnam plus few northern prov-
inces of Vietnam bordering Laos, as well as whole areas 
of Laos. Region B (in blue)  depicted higher C. sinen-
sis transmission  risk in northestern Vietnam, adjoining 
the border to Guangxi  Zhuang Autonomous Region  of 
China. Region C (in pink) represented a transitional zone 
of mixed species potential, where the RF model predicted 
O. viverrini transmission  probability < 1. This spanned 4 
northwestern provinces and 2 northcentral provinces of 
Vietnam, as well as small areas in northern Laos border-
ing Vietnam.

Table 3 Training model fit metrics for the machine learning approaches

AUC, area under the receiver operating characteristic curve; Threshold, optimal probability threshold for model predictions; Accuracy, overall accuracy of model 
predictions; Kappa, Cohen’s Kappa statistic measuring prediction agreement; Sensitivity, model sensitivity in predicting presence; Specificity, model specificity in 
predicting absence; RF, random forest model; XGBOOST, extreme gradient boosting model; GBM, gradient boosting machine model; LM, logistic regression model; DT, 
decision tree model; NNET, neural network model

Model AUC Threshold Accuracy Kappa Sensitivity Specificity

LM 1 0.093 1 1 1 1

RF 1 0.093 1 1 1 1

GBM 1 0.093 1 1 1 1

DT 1 0.093 1 1 1 1

NNET 0.996 0.093 0.991 0.998 0.981 1

XGBOOST 1 0.091 1 1 1 1

Table 4 Parameters of model performance in the testing set

AUC, area under the receiver operating characteristic curve; Threshold, optimal probability threshold for model predictions; Accuracy, overall accuracy of model 
predictions; Kappa, Cohen’s Kappa statistic measuring prediction agreement; Sensitivity, model sensitivity in predicting presence; Specificity, model specificity in 
predicting absence; RF, random forest model; XGBOOST, extreme gradient boosting model; GBM, gradient boosting machine model; LM, logistic regression model; DT, 
decision tree model; NNET, neural network model

Model AUC Threshold Accuracy Kappa Sensitivity Specificity

LM 1 0.117 1 1 1 1

RF 1 0.117 1 1 1 1

GBM 1 0.117 1 1 1 1

DT 1 0.117 1 1 1 1

NNET 0.991 0.117 0.999 0.996 0.9964 1

XGBOOST 1 0.117 1 1 1 1

https://github.com/jamesjin63/Liver_fluke/
https://github.com/jamesjin63/Liver_fluke/
https://github.com/jamesjin63/Liver_fluke/
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Discussion
Of the six machine-learning models developed in this 
study, all except the NNET model, accurately classified 
and predicted C. sinensis and O. viverrini infections 
during model fitting and projection across the Mekong 
River Basin and Guangxi  Zhuang Automomous 
Region of China. Despite known absence of O.viverrini 
in China, the RF model predicted potential presence 
in small areas of northwestern Guangxi Zhuang Auton-
omous Region of China, either indicating inaccurate 
classification or undiscovered transmission. The LM 
model predicted no any  O. viverrini transmission  risk 

in China, but modelled suitable areas across central 
and southern Vietnam, aligning with national surveys 
[19, 20]. Reportedly endemic areas across 21 northern 
provinces  of Vietnam for C. sinensis infections, con-
centrated near the Red River Basin [14]. O. viverrini 
persists across 11 central provinces of Vietnam  while 
control efforts have eliminated southern foci there [21]. 
However, complex co-endemic areas remain under-
studied, with no reports from north-western Vietnam 
[5]. Sithithaworn et al. previously delimited a diagonal 
boundary from Lai Chau Province northwest to Quang 
Binh Province central-east  of Vietnam, designating 
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upper and lower zones for C. sinensis and O. viverrini, 
respectively [20, 22]. We identified a transition zone of 
mixed transmission risk in Vietnam, with suitable envi-
ronments for both flukes, spanning four northwestern 
provinces and  two northcentral provinces. Visualizing 
the projected ranges advances an understanding of 
potential overlapping. As these infections depend on 
human culinary practices, mixed zones likely reflect 
localized food habits including raw fish dishes.

The distinct geographic distributions of C. sinensis 
and O. viverrini motivated an analysis of geographic, 
climatic, and anthropogenic predictors, revealing diver-
gence between the two flukes. For example, the former 
occurred mostly in low latitudes while the latter pre-
dominated in higher latitudes. In Thailand, O. viver-
rini is concentrated in the Northeast with a similar high 
latitude pattern in Laos [23]. Most georeferenced O. 
viverrini occurrences are from Thailand. Reports from 
Vietnam noted C. sinensis as concentrated around the 
Red River Basin in lower latitudes [24]. Climate also dif-
fered between endemic areas, with mean annual pre-
cipitation of 772  mm for C. sinensis versus 367  mm 
for O. viverrini. These factors likely influenced fluke 

distributions indirectly by impacting snail intermediate 
hosts. A study in Thailand found O. viverrini sensitive 
to rainfall and minimum temperature, with consistent 
prevalence from 41–356 mm monthly rainfall but a drop 
above 23  °C [25]. The most influential predictors varied 
among models constructed here. Considering variables 
contributing over 75% for O. viverrini, key factors were 
annual mean temperature (Bio1), temperature season-
ality (Bio4), warmth index (Bio8), rainfall in warmest 
quarter (Bio18) and annual temperature range (Bio3). 
The LM dependency plot showed O. viverrini probability 
increasing with temperature seasonality. Infection likeli-
hood peaked around 300% variance in seasonal tempera-
tures and with over 750 mm precipitation in the warmest 
quarter. As annual mean temperature rose above 27  °C, 
O. viverrini probability approached 100%. These results 
highlight climatic factors, especially temperature and 
rainfall, as important delineators between O. viverrini 
and C. sinensis distributions. In differentiating the distri-
bution of O. viverrini and C. sinensis, our study identified 
several critical influencing factors. For C. sinensis, fac-
tors such as higher temperatures and urbanized environ-
ments showed greater association, whereas O. viverrini 
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distribution was more influenced by wetland ecosystems 
and certain agricultural practices, and lower elevation 
ranges for the Bithynia spp.  snail hosts of O. viverrine 
[26]. The distinction in habitat preferences, intermediate 
host snail species, and human behaviours, including die-
tary differences across regions, were significant in delin-
eating the distribution of these flukes. These variables 
were crucial in our machine learning models to predict 
geospatial distribution with greater specificity.

The results demonstrated environmental and climatic 
variables shape distributions of C. sinensis and O. viver-
rini. Divergence across factors enables classification, 
with models accurately categorizing infections in test 
data. However, as Max Kuhn notes, machine-learning 
risks finding spurious relationships if predictors closely 
parallel outcomes, producing apparent 100% accuracy 
for uninformative variables. While dividing flukes using 
single factors proved successful here, disease emergence 
involves complex interactions among environmental, 
climatic, and social determinants [27]. Despite ideal per-
formance during training, GBM leaning solely on annual 
mean temperature range and temperature seasonality 
generated some geographically discordant projections. 
This highlights the need to validate models against real-
world data, not just internal fit, when applying predic-
tions. While these spatial models’ further knowledge of 
potential C. sinensis and O. viverrini distributions, mul-
tifaceted drivers and potential sampling biases warrant 
caution for public health planning until localized sur-
veys confirm patterns. Elimination efforts require under-
standing mixed-disease contexts through on-the-ground 
investigation. Our models successfully distinguished 
northern endemic areas for C. sinensis from southern 
O. viverrini foci but also delimited a transitional zone 
of overlapping potential spanning 6 north-western Viet-
namese provinces where both liver flukes may persist. 
This coexistence complicates control efforts designed 
for single infection. The policy recommendation should 
be with a multi-pronged approach in these zones of sym-
patry, incorporating coordinated interventions tailored 
to each species while integrating education and policy 
to maximize efficacy. This includes dual drug adminis-
tration with praziquantel and tribendimidine to target 
both flukes, augmented diagnostics to distinguish infec-
tions, ecological modifications limiting snail intermediate 
hosts, and sociocultural promotion of cooked fish con-
sumption given dietary habits underlying transmission. 
Robust surveillance is vital to monitor efforts [28].

Although this study collected georeferenced human 
infections to classify liver flukes using environmental 
predictors and machine-learning, limitations include reli-
ance on reported occurrence points from prior literature, 
lack of animal infection data, exclusion of intermediate 

snail/fish host distributions, assumptions that all suitable 
environments have active transmission, and generaliz-
ability constraints of machine learning algorithms. Addi-
tionally, while we identified sympatric zones, molecular 
evidence would further confirm co-endemicity. Future 
work should incorporate such data to delineate ranges. 
Our ecological approach provided initial delineation in 
Vietnam, but molecular epidemiology is needed to con-
firm potential boundaries or zones of sympatry. Further 
studies should identify underlying drivers, be it inter-
mediate host compatibility or fluke biology. Questions 
remain whether a sharp boundary exists and what drives 
separation. To address these complexities, a multidisci-
plinary collaboration that synthesizes eco-epidemiology, 
molecular epidemiology, malacology, and parasitology is 
essential. This would allow for a deeper understanding 
of fluke ecology, inform targeted control programs, and 
support the global effort to combat these neglected tropi-
cal diseases within the framework of the One Health con-
cept [29].

Conclusions
This study delineated the boundary between C. sinen-
sis and O. viverrini in the Mekong River Basin, identify-
ing sympatric transmission in Vietnam concentrated 
in northwestern and northcentral provinces, and part 
of northern Laos. Environmental, climatic, and sociocul-
tural factors diverged between the endemic areas, with 
rainfall in the warmest quarter, precipitation in the wet-
test month and annual mean temperature influencing 
distributions most. Machine-learning models effectively 
classified  the endemic areas of liver flukes, demonstrat-
ing utility for mapping boundaries. Elimination of these 
neglected tropical diseases requires understanding the 
mosaic of species and targeting control and surveillance 
to local transmission patterns. Further molecular epi-
demiological studies can confirm the potential bound-
ary and drivers shaping this divergence across Southeast 
Asia.
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