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Abstract 

Background Tuberculosis (TB) remains a pressing public health issue, posing a significant threat to individuals’ well‑
being and lives. This study delves into the TB incidence in Chinese mainland during 2014–2021, aiming to gain deeper 
insights into their epidemiological characteristics and explore macro‑level factors to enhance control and prevention.

Methods TB incidence data in Chinese mainland from 2014 to 2021 were sourced from the National Notifiable 
Disease Reporting System (NNDRS). A two‑stage distributed lag nonlinear model (DLNM) was constructed to evalu‑
ate the lag and non‑linearity of daily average temperature (℃, Atemp), average relative humidity (%, ARH), average 
wind speed (m/s, AWS), sunshine duration (h, SD) and precipitation (mm, PRE) on the TB incidence. A spatial panel 
data model was used to assess the impact of demographic, medical and health resource, and economic factors on TB 
incidence.

Results A total of 6,587,439 TB cases were reported in Chinese mainland during 2014–2021, with an average 
annual incidence rate of 59.17/100,000. The TB incidence decreased from 67.05/100,000 in 2014 to 46.40/100,000 
in 2021, notably declining from 2018 to 2021 (APC = ‑8.87%, 95% CI: ‑11.97, ‑6.85%). TB incidence rates were higher 
among males, farmers, and individuals aged 65 years and older. Spatiotemporal analysis revealed a significant cluster 
in Xinjiang, Qinghai, and Xizang from March 2017 to June 2019 (RR = 3.94, P < 0.001). From 2014 to 2021, the propor‑
tion of etiologically confirmed cases increased from 31.31% to 56.98%, and the time interval from TB onset to diagno‑
sis shortened from 26 days (IQR: 10–56 days) to 19 days (IQR: 7–44 days). Specific meteorological conditions, includ‑
ing low temperature (< 16.69℃), high relative humidity (> 71.73%), low sunshine duration (< 6.18 h) increased the risk 
of TB incidence, while extreme low wind speed (< 2.79 m/s) decreased the risk. The spatial Durbin model showed 
positive associations between TB incidence rates and sex ratio (β = 1.98), number of beds in medical and health 
institutions per 10,000 population (β = 0.90), and total health expenses (β = 0.55). There were negative associations 
between TB incidence rates and population (β = ‑1.14), population density (β = ‑0.19), urbanization rate (β = ‑0.62), 
number of medical and health institutions (β = ‑0.23), and number of health technicians per 10,000 population 
(β = ‑0.70).
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Conclusions Significant progress has been made in TB control and prevention in China, but challenges per‑
sist among some populations and areas. Varied relationships were observed between TB incidence and factors 
from meteorological, demographic, medical and health resource, and economic aspects. These findings underscore 
the importance of ongoing efforts to strengthen TB control and implement digital/intelligent surveillance for early risk 
detection and comprehensive interventions.

Keywords Tuberculosis, Surveillance, Epidemiological characteristics, Incidence, Influence factor, Distributed lag 
nonlinear model (DLNM), Spatial panel model, China

Background
Tuberculosis (TB) has long been a global public health 
challenge, with approximately 10.6 million cases reported 
worldwide in 2022 [1]. Despite advancements in medi-
cal technology and healthcare, TB remains the leading 
infectious cause of death, claiming 1.5 million lives annu-
ally [2]. According to the World Health Organization 
(WHO), eight countries, including China, accounted 
for two-thirds of global TB cases in 2022 [1]. China, 
the third-largest contributor to global TB burden [1], 
reported an incidence rate of 45.37/100,000 in 2021 [3]. 
While China has made commendable progress in TB 
control, ongoing attention is required for high-risk areas 
and populations [4]. Therefore, a comprehensive under-
standing of the demographic, temporal, and spatial distri-
bution of TB is essential for effective interventions.

Although several studies have explored the epidemio-
logical features of TB in China over different periods and 
regions [5–8], this study distinguishes itself through its 
detailed analysis and extended temporal scope. Utilizing 
data from the National Notifiable Disease Reporting Sys-
tem (NNDRS), this study provides a more thorough anal-
ysis of the demographic, temporal, and spatial aspects of 
TB incidence from 2014 to 2021.

Various macro-level factors, such as climate change, 
population migration, and urbanization, signifi-
cantly influence infectious disease patterns [9]. Recent 
researches have investigated the relationship between 
these macroscopic factors and TB incidence, using 
diverse statistical analyses [4, 5, 10, 11]. The logistic and 
line regression models were usually used for explor-
ing the linear relationship, based on the individual data. 
However, studies have proved the relationship between 
meteorological factors and TB incidence was nonlinear 
and lagged [10–12]. Based on the data in our study, the 
distributed lag nonlinear model (DLNM) can effectively 
capture the non-linear and lagged relationship between 
meteorological factors and TB incidence, revealing expo-
sure-lag-response effects [10–12]. A study employing 
DLNM found temperature, relative humidity, and wind 
speed playing crucial roles in TB incidence with delayed 
and non-linear effects in Urumqi, China [10]. Addition-
ally, spatial panel data models have been employed to 

analyze the relationship between socioeconomic factors 
and TB incidence, accounting for spatial dependence and 
heterogeneity [13, 14]. However, all these studies have 
been conducted in different geographic locations which 
focus on the relationship of someone factors with TB 
incidence. The comprehensive nationwide studies explor-
ing the relationship between factors from meteorological, 
demographic, medical and health resource, and eco-
nomic aspects and TB incidence are lacking. Hence, this 
study aims to bridge this gap by examining the nation-
wide perspective to better understand the relationship 
between macro-influence factors and TB incidence, facil-
itating more targeted interventions.

Methods
Data collection
The surveillance data for TB incidence in Chinese main-
land from 2014 to 2021 were obtained from the NNDRS, 
an internet-based real-time disease-reporting system. 
The reported cases encompass suspected case, clinically 
diagnosed cases and etiologically confirmed cases, align-
ing with the diagnosis criteria for TB stipulated and dis-
seminated by the National Health Commission of the 
People’s Republic of China [15]. Suspected cases were 
excluded from the analysis, focusing on clinically diag-
nosed and etiologically confirmed cases. Anonymized 
data included demographic details (residential ID num-
ber, sex, age, and occupation) and clinical particulars 
(dates of symptom onset, diagnosis date, and diagnosis 
category).

Demographic data by age and sex for 31 provincial-level 
administrative divisions (PLADs) and the Chinese main-
land were collected from the National Bureau of Statistics 
of China (http:// www. stats. gov. cn/ engli sh/ Stati stica ldata/ 
Annua lData, accessed on April 20, 2023). Daily mete-
orological monitoring data during 2017–2019, including 
daily average temperature (°C, Atemp), daily average rela-
tive humidity (%, ARH), daily average wind speed (m/s, 
AWS), daily sunshine duration (h, SD), and daily precipi-
tation (mm, PRE), were collected from the China Mete-
orological Data Sharing Service System (http:// data. cma. 
cn/, accessed on April 22, 2023). Yearly province-level 
economic [gross domestic product (GDP) per capita], 

http://www.stats.gov.cn/english/Statisticaldata/AnnualData
http://www.stats.gov.cn/english/Statisticaldata/AnnualData
http://data.cma.cn/
http://data.cma.cn/
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demographic (population, population density, sex ratio, 
natural population growth rate and urbanization rate), 
and medical and health resource data (number of medical 
and health institutions, number of health technicians per 
10,000 population, number of beds in medical and health 
institutions per 10,000 population, total health expenses) 
during 2014–2019 were collected from the National 
Bureau of Statistics of China (http:// www. stats. gov. cn/ 
engli sh/ Stati stica ldata/ Annua lData, accessed on March 
20, 2023). The definition of each indicators were in the 
Supplement Table 1.

The administrative regions were categorized into 
province-level, prefecture-level, county-level and town-
ship level administrative regions. This study focused on 
the 31 PLADs in Chinese mainland, stratified into seven 
regions. The period from disease onset to diagnosis was 
calculated as the time of diseases onset minus the time 
of diagnosis by medical and health institutions, and clas-
sified into nine groups: 0–6 days, 1–2 weeks, 2–3 weeks, 
3 weeks–1 month, 1–2 months, 2–6 months, 6 months–1 
year, 1–2 years and more than 2 years.

Joinpoint regression analysis
Temporal trends were analyzed using Joinpoint regres-
sion software (version 4.9.0.0, National Cancer Institute, 
Rockville, MD, USA). The default modeling method was 
the grid search method, and Monte Carlo permutation 
testing was the default model optimization strategy. The 
Bayesian information criterion (BIC) was employed as 
a metric for gauging good fit [16]. The average annual 
percent changes (AAPCs) with their 95% confidence 
interval (CI) were calculated for incidence rates during 
2014–2021, which was subsequently computerized as a 
geometrically weighted average of the generated annual 
percent changes (APCs). The APC serves as an indicator 
of the average annual percentage alteration in incidence 
rates and is represented by the slope of the fitted line 
of each interval. The APC is used to evaluate the inter-
nal trend of each independent interval of a segmented 
function, or a global trend with a number of connected 
points of zero. An AAPC/APC > 0 (P < 0.05) denotes an 
increasing trend in incidence rates, whereas an AAPC/
APC < 0 (P < 0.05) signifies a decreasing trend. Con-
versely, P > 0.05 indicates the trends stable. The APC 
can be expressed as Eq. (1), where y represents the inci-
dence rate, x represents year, β1 represents regression 
coefficient.

ln(y) = β0 + β1x

(1)APC =
yx+1 − yx

yx
× 100 = (eβ1 − 1)× 100

Spatiotemporal analysis
Spatiotemporal analysis was conducted using SaTScan 
software (version 10.1, Kulldorff and Information Man-
agement Services, Inc., Boston, MA, USA). A Poisson 
probability model identified clusters of TB with a tem-
poral and spatial window of 30% [17]. By juxtaposing 
observed and predicted events within each location win-
dow, assuming a random distribution, probable clusters 
were pinpointed. The cluster exhibiting the highest log-
likelihood ratio (LLR) was deemed the most likely cluster, 
while others were ranked as secondary clusters in a spe-
cific sequence [17]. Relative risk (RR) indicated the ele-
vated infection risk within the cluster compared to outside 
it [17]. Spatiotemporal analysis was performed at both 
province-level and prefecture-level during 2014–2021.

Distributed lag non‑linear model (DLNM)
A two-stage DLNM was used to analyzed relationship 
between meteorological factors and TB incidence based 
on the daily data during 2017–2019. The first stage 
involved constructing DLNM at each prefecture-level site 
to assess the lag and non-linearity of factors on TB risk. 
The DLNM based on a quasi-Poisson distribution served 
as the basic model for detecting possible delayed effects 
and nonlinear associations between exposures and TB 
incidence for each city in the first stage of analysis. The 
DLNM can be expressed as Eq.  (2), where Yt represents 
the outcome variable, which conforms to a normal dis-
tribution, Gamma distribution, or Poisson distribution; E 
(Yt) represents the expectation of the dependent variable 
Y at time t; g represents the connection function; sj rep-
resents the nonlinear function between xj and E (Yt); uk 
represents other variables that have a linear relationship 
with E(Yt); β, γ represents the parameter vectors of xj and 
uk respectively [18, 19].

In the second stage, a multivariate meta-regression 
model was constructed to capture the overall pooled expo-
sure–response relationship in Chinese mainland [18, 20]. 
The cumulative effects of each independent variable on TB 
incidence were calculated, then lag-specific effects were 
calculated in different levels of variable. The crossbasis 
functions of Atemp, ARH, SD, PRE and AWS were built to 
analyze the lag-exposure–response relationship of meteor-
ological factors. When one factor was included in the func-
tion, the other variables were set as covariates. The variance 
inflation factor (VIF) of meteorological factors were calcu-
lated to judge the multicollinearity between variables in dif-
ferent models.

(2)g(ut) = α +
∑j

j=1
sj(xtj;βj)+

∑k

k=1
γkutk

http://www.stats.gov.cn/english/Statisticaldata/AnnualData
http://www.stats.gov.cn/english/Statisticaldata/AnnualData
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The degree of freedom (df) of spline function of mete-
orological factors was set to three. Some studies have 
reported that the average incubation period of TB 
ranges from four to eight weeks [14], we set the maxi-
mum lag as 60 days. The sensitivity analysis was con-
ducted by adjusting three aspects of parameters to test 
the robustness of our results, including the df of cross-
basis (df = 3–5), the df of time variable (df = 6–8) and the 
lag days (lag = 55, 60, 65). The different quantiles of each 
independent variable  (P5,  P25,  P75, and  P95) were defined 
as extreme low, low, high, and extreme high levels. On 
the basis of the above model, taking the median of each 
factor as the reference value, the influence of meteoro-
logical factors on TB was discussed. RR is a measure of 
association which represents the change in TB incidence 
risk at any given Atemp compared with a reference 
Atemp (median value) [21], as well as for ARH, AWS, SD 
and PRE. The attributable fraction (AF) is a measure that 
quantifies the public health impact of an exposure on a 
factor. The AF of low and high values were calculated for 
each prefecture-level site and then the overall AF was 
estimated. Low value refers to value below the median 
 (P50), dividing into mild low value  (P5–P50) and extreme 
low value (<  P5). High value refers to value above the 
median  (P50), dividing into mild high value  (P50–P95) and 
extreme high value (>  P95).

The analysis mentioned above was conducted by R 
(version 4.0.3, R Development Core Team, USA), with 
package “dlnm” [22] and “splines” (R Core Team, 2021) to 
fit all DLNMs and the package “mvmeta” to conduct all 
multivariate meta-regression models.

Spatial panel data model
A spatial panel yearly data model at each province-level 
site were constructed to evaluate the impacts of factors 
from demographic, medical and health resource, and 
economic aspects on TB incidence. A spatial autocorre-
lation analysis using Moran’s I and scatter plot was per-
formed to test if there is a spatial correlation between 
regions, followed by spatial panel estimations with suit-
able models. We adopted the data during 2014 to 2019 
for spatial panel model analysis. All variables were taken 
as logarithmic values.

Spatial autocorrelation analysis
Spatial dependence is a geographical phenomenon. The 
regional TB incidence has the characteristics of spatial 
spillover and spatial diffusion, with a great impact on 
the incidence of neighboring areas. The Moran’s I was 
selected to measure the spatial autocorrelation between 
the incidence rate of TB in different regions. The 

value of Moran’s I range is from -1 to 1, with Moran’s 
I being < 0, = 0 and > 0 indicating the presence of spatial 
negative, no and positive autocorrelation, respectively. 
The Moran’s I is defined as Eq. (3), where N is the num-
ber of spatial units indexed by locations (PLADs in this 
study) i and j, Wij is a spatial weight matrix, yi and yj 
refer to the observations of i and j, respectively, y refers 
to the incidence rate of TB, y refers to the mean of y.

The spatial panel data model defines the correlation 
mode and degree between research units by introduc-
ing a spatial weight matrix. A spatial weight matrix is 
necessary for providing spatial-structure information 
between adjacent areas and how they interact with each 
other. Here, the Rook weight matrix was adopted. The 
spatial weight matrix is defined as W, with elements Wij 
indicating whether or not observations i and j are spa-
tially close. If units i and j (≠ i) are neighbors, the spa-
tial weight is 1; otherwise, it is 0. Wij can be written as 
Eq. (4).

GeoDa (version 1.18.0, Luc Anselin, Urbana) was 
used for calculating the Moran’s I and drawing the 
Moran scatter plots, as well as constructing Rook spa-
tial weight matrix based on the contiguity for 31 PLADs 
in Chinese mainland.

Spatial panel models
The spatial panel models can effectively solve the spatial 
dependence of TB incidence rate. Three types of spatial 
panel models were considered, including the spatial lag 
model (SLM), the spatial error model (SEM) and spatial 
Durbin model (SDM). The SLM can be interpreted the 
spatial dependency between the dependent variables, 
and can be written as Eq.  (5) [23]. The δ is the spatial 
autoregressive coefficient and Wij′ is the row standard-
ized spatial weight matrix (Wij).

The SEM considers spatial lag error term, and can be 
written as Eq. (6) [23]. The λ refers to the spatial auto-
correlation coefficient. φit reflects the spatially autocor-
related error term.

(3)

I =

∑N
i=1

∑N
j �=1

Wij

(

yi − y
)(

yj − y
)

S2
(

∑N
i=1

∑N
j=1

Wij

) =

N
∑

i=1

N
∑

j �=1

Wij

(

yi − y
)(

yj − y
)

(

N
∑

i=1

N
∑

j �=1

Wij

)

N
∑

i=1

(

yi − y
)2

(4)Wij =

{

1

0
if i is contiguous to j, Wij = 1; otherwise Wij = 0

(5)yit = δ

N
∑

j=1

Wij
′yjt + βxit + ui + εit
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The SDM can be used to investigate not only the influ-
ence of local variables on dependent variables but also 
the influence of adjacent regional dependent variables 
and their independent variables, and can be expressed as 
Eq. (7) [24].

Model selection
The SDM was selected as the base model, and conducted 
LR and Wald test to determine whether SDM can degen-
erate into SLM or SEM. If P < 0.05, the SDM was selected; 
otherwise SLM or SEM were selected. The lagrange mul-
tiplier test (LM test) was applied for testing if there is a 
spatial error effect and a spatial lag effect, including four 
tests (LM-lag, LM-error, robust LM-lag, and robust LM-
error tests). The selection of fixed-effect and random-
effect models was determined by the objective of this 
study and Hausman test. We focused on the analysis 
in 31 PLADs and did not extrapolate the results, so we 
chose the fixed effects model [13]. The Akaike informa-
tion criterion (AIC), BIC, and R2 were compared between 
time fixed, individual fixed and two-way fixed SDM to 
select suitable model. The Stata (version 17.0, Stata Cor-
poration, College Station, Texas) was used for panel spa-
tial regression analyses.

(6)

yit = βxit + ui + φit

φit = �

N
∑

j=1

W ′
ijφit + εit

(7)yit = δ

N
∑

j=1

W
′

ij yit+βxit + γ

N
∑

j=1

W
′

ij xjt+ui + εit

Results
Overview of TB cases
A total of 6,587,439 TB cases were reported in Chinese 
mainland from 2014 to 2021, with an average annual 
incidence rate of 59.17/100,000. Among them, 4,073,251 
cases were clinically diagnosed cases (average annual 
incidence rate: 36.59/100,000). While 2,514,188 cases 
were etiologically confirmed cases (average annual inci-
dence rate: 22.58/100,000), accounting for 38.17% of all 
reported TB cases (Fig. 1).

Demographic distributions of TB cases
There were 4,535,201 male cases and 2,052,238 female 
cases during 2014–2021, with average annual incidence 
rates of 79.60/100,000 and 37.75/100,000, respectively 
(Fig.  2A). Both male (AAPC = -5.26%, 95% CI: -6.21, 
-4.45%) and female (AAPC = -4.78%, 95% CI: -5.78, 
-3.90%) incidence rates showed a decreasing trend over 
the years (Additional file: Supplement Table 2). Age dis-
tribution showed that the highest number of TB cases 
was in the 40–64 age group, followed by 15–39 age 
group; the highest incidence rate was in population aged 
65 years and older (annual average incidence rate was 
121.36/100,000), followed by 40–64 (67.53/100,000) and 
15–39 (56.44/100,000) age groups (Fig.  2A). Incidence 
rates generally decreased from 2014 to 2021 across dif-
ferent age groups, except for an increase in the 5–14 age 
group (Additional file: Supplement Table  2). Incidence 
rates varied by age and gender, with a slightly higher 
incidence rate for females in the 15–39 age group and a 
higher incidence rate for males in the 40–64 age group 
(Fig. 2A).

Fig. 1 The monthly TB incidence cases and rates in Chinese mainland during 2014–2021
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Farmers accounted for 63.37% of all reported cases, 
followed by housekeepers/house-workers/unemployed 
(13.83%), students (5.20%), retired population (5.00%), and 
factory workers (3.79%). (Fig.  2B). Among all incidence 
cases, the proportion of farmers (AAPC = -1.77%, 95% CI: 
-1.90, -1.67%) and factory workers (AAPC = -1.44%, 95% 
CI: -2.02, -0.98%) decreased from 2014 to 2021, while the 
proportion of housekeepers/house-workers/unemployed 
(AAPC = 4.98%, 95% CI: 4.35, 5.48%), retired popula-
tion (AAPC = 4.62%, 95% CI: 3.87, 5.30%) and students 
(AAPC = 7.94%, 95% CI: 5.20, 11.58%) increased (Addi-
tional file: Supplement Table 3).

Temporal trends of TB cases
The overall TB incidence rate of TB decreased from 
67.05/100,000 in 2014 to 46.40/100,000 in 2021 
(AAPC = -5.12%, 95% CI: -5.93, -4.41%), with obvi-
ous decrease from 2018 to 2021 (APC = -8.87%, 95% 
CI: -11.97, -6.85%) (Fig.  3A). The rate of clinically 
diagnosed TB cases was also with decreasing trend 
(AAPC = -12.29%, 95% CI: -14.56, -10.70%) (Fig.  3B). 
The incidence of etiologically confirmed cases decreased 
from 2014 to 2016 without statistically significance 
(APC = -5.71%, 95% CI: -13.65, 3.72%), then statistically 

increased from 2016 to 2021 (APC = 8.86%, 95% CI: 6.19, 
16.32%) (Fig. 3C).

The temporal trends of TB incidence rates for 31 
PLADs showed that 22 PLADs decreased with statisti-
cally significance, with the biggest decrease in Gansu 
(AAPC = -11.55%, 95% CI: -15.39, -8.19%). An increas-
ing trend was observed in one province. In addition, a 
joinpoint was observed in eight PLADs with an irregular 
change during 2014–2021, of which four PLADs present 
a decreasing trend during the later period (Fig.  3D and 
Additional file: Fig. S1).

Spatiotemporal distributions of TB cases
The spatiotemporal analysis during 2014–2021 based on 
province-level incidence rates identified six clusters cov-
ered 22 PLADs in different periods, with the most likely 
cluster located in Xinjiang, Qinghai and Xizang during 
March 2017–June 2019 (RR: 3.94, P < 0.001). Other five 
clusters distributed in different PLADs in different period 
(Table  1). The spatiotemporal analysis for single years 
showed that the level of clusters for most PLADs changed 
during 2014–2021, while remained unchanged for some 
PLADs (Fig. 4).

The spatiotemporal analysis during 2014–2021 based 
on prefecture-level incidence rates identified 17 clusters 

Fig. 2 The demographic distributions of TB cases in Chinese mainland during 2014–2021. A The TB incidence number and rates by gender and age 
groups. B The percentage of TB cases by occupations
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covered 102 prefecture-level administrative divisions 
in different periods, with the most likely cluster located 
mainly in five prefecture-level administrative divisions 
(Kizilsu Kirghiz Autonomous Prefecture, Kashi Prefec-
ture, Aksu Prefecture, Hotan Prefecture, and Tumxuk) 
of Xinjiang during March 2017–June 2019 (RR = 8.55, 
P < 0.01). Other significant clusters were mainly present 
in various eastern regions of China (Additional file: Sup-
plement Table 4).

The period from TB onset to diagnosis
The median period from TB onset to diagnosis was 23 
[inter-quartile range (IQR): 8–51] days during 2014–
2021, decreasing from 26 (IQR: 10–56) days in 2014 to 19 
(IQR: 7–44) days in 2021. The dominant period shifted 
from 1–2 months in 2014–2016 to 0–6 days in 2017–
2021. The proportion of 0–6 days increased from 18.70% 
in 2014 to 24.08% in 2021, as well as the proportion of 
1–2 weeks increased from 12.56% in 2014 to 15.45% 2021 
(Fig. 5A).

Fig. 3 The temporal trends of incidence rates for 31 PLADs and Chinese mainland during 2014–2021. A The temporal trend of TB incidence 
rate in Chinese mainland. B The temporal trend of incidence rate for clinically diagnosed TB cases in Chinese mainland. C The temporal trend 
of incidence rate for etiologically confirmed TB cases in Chinese mainland. D The temporal trends of TB incidence rates in the 31 PLADs. Notes: In 
Figure A‑C, points represent the observed incidence rates, lines represent the fitting line of the observed incidence rates and the slopes indicate 
the value of APC, * represents the P < 0.05. PLADs, Provincial‑level administrative divisions; APC, Annual percent changes

Table 1 The spatiotemporal distributions of PLADs’ incidence rates during 2014–2021

PLADs Provincial-level administrative divisions, RR Relative risk, LLR Log-likelihood ratio

The level of 
clusters

Covered PLADs The period of clusters RR LLR P

1 Xinjiang, Qinghai, Xizang March 2017–June 2019 3.94 112946.67 < 0.001

2 Guangdong, Guizhou, Guangxi, Hainan, Hunan January 2014–April 2016 1.61 62121.91 < 0.001

3 Heilongjiang January 2014–April 2016 1.55 6669.02 < 0.001

4 Gansu, Henan, Ningxia, Shanxi, Shaanxi, Sichuan, 
Chongqing

January 2014–June 2015 1.14 2372.64 < 0.001

5 Anhui, Hubei, Jiangsu, Jiangxi, Zhejiang January 2014–June 2014 1.12 599.34 < 0.001

6 Inner Mongolia January 2018–May 2018 1.10 29.06 < 0.001
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The 0–6 days period became dominant across gen-
ders, ages, and occupations. Among farmers, the domi-
nant period changed from 1–2 months in 2014 to 0–6 
days in 2021 (Fig. 5B-G). Three patterns were observed 
in the spatial distribution of the period in 2021, with the 
0–6 days period dominant in 23 PLADs, the 1–2 months 
period dominant in six PLADs, and the 1–2 weeks 
period dominant in two PLADs. Changes in the domi-
nant period were observed in 17 PLADs from 2014 to 
2021 (Fig. 5H-I).

The proportion of etiologically confirmed cases
The average proportion of etiologically confirmed 
cases during 2014–2021 was 38.17%. The propor-
tion of etiologically confirmed cases increased dur-
ing 2014–2021 (AAPC = 9.62%, 95% CI: 6.43, 14.61%), 
including changed irregularly initially (APC = -5.10%, 
95% CI: -15.55, 12.42%) and then increased from 
29.33% in 2016 to 56.98% in 2021 (APC = 16.13%, 95% 
CI: 9.66, 33.95%) (Fig.  6 and Additional file: Supple-
ment Table  5). The proportion of etiologically con-
firmed cases among males was consistently higher than 
among females in each year. Both genders showed an 
increase in the proportion of etiologically confirmed 
cases, with males rising from 32.62% in 2014 to 58.23% 
in 2021 (AAPC = 9.30%, 95% CI: 6.32, 13.98%), and 

females rising from 28.38% in 2014 to 54.28% in 2021 
(AAPC = 11.40%, 95% CI: 8.14, 15.25%). The propor-
tion of etiologically confirmed cases increased with 
age, with the highest proportion in the population aged 
65 years and older. Proportions generally increased 
in all age groups, especially in the 0–4 age group 
(AAPC = 25.50%, 95% CI: 18.97, 32.48%). The retired 
population had the highest proportion of etiologically 
confirmed cases among occupational categories, while 
students had the lowest. The proportion of etiologi-
cally confirmed cases increased among six occupation 
categories, particularly in students (APC = 13.34%, 95% 
CI: 9.64, 19.27%) (Fig. 6 and Additional file: Supplement 
Table 5).

In 2021, the proportion of etiologically confirmed cases 
in 15 PLADs was higher than the nationwide average 
(56.98%). The proportion increased for 31 PLADs, espe-
cially in Shaanxi from 2014 to 2021 (AAPC = 22.66%) 
(Fig. 6 and Additional file: Supplement Table 5).

Relationships between meteorological factors and TB 
incidence
There was no multicollinearity between five meteoro-
logical factors (Atemp, ARH, AWS, SD and PRE) based 
on the variance inflation factor (VIF) (Additional 
file: Supplement Table  6). Overall pooled cumulative 

Fig. 4 The spatiotemporal distributions of PLADs’ incidence rates in single years during 2014–2021. PLADs, Provincial‑level administrative divisions
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exposure–response relationships of exposure to mete-
orological indicators with TB incidence were identified 
(Fig. 7). A risk effect was observed when Atemp lower 
than median value (16.69℃) and the protective effect 
when Atemp higher than 16.69℃, with the RR peaked 
at -1.5℃ (RR: 2.48, 95% CI: 1.88, 3.27) (Fig. 7A). A risk 
effect was observed when ARH higher than median 
value (71.73%), with the RR peaked at 95% (RR: 1.33, 
95% CI: 1.18, 1.49) (Fig.  7B). A protective effect was 
observed when AWS lower than 2.79 m/s (Fig. 7C). A 
risk effect was observed when SD lower than median 
value (6.18 h), with RR peaked at 0 h (RR: 1.52, 95% CI: 
1.33, 1.74) (Fig. 7D). A risk effect was observed when 

PRE lower than 13.2 mm, with RR peaked at 9 mm 
(RR: 1.26, 95% CI: 1.08, 1.48) (Fig.  7E). The sensitiv-
ity analyses showed the similar results with the varying 
degrees of freedom of cross basis and time variable, lag 
days (Additional file: Fig. S2).

Extreme low Atemp (< -6.76℃) had a risk effect on 
TB at lag 1 days and later, and RR peaked at lag 42 days 
(RR: 1.04, 95% CI: 1.04, 1.05). Low Atemp (< 7.43℃) had 
a risk effect on TB at lag 6 days and later. High Atemp 
(> 23.65℃) had a risk effect at lag 1–4 days, and a pro-
tective effect at lag 15–60 days. Extreme high Atemp 
(> 29.06℃) had a protective effect at lag 30–46 days 
(Fig.  8A). Low ARH (< 56.52%) had a risk effect at lag 

Fig. 5 The period from TB onset to diagnosis by year, gender, age groups, occupations and PLADs. A The percentage of nine period groups 
in Chinese mainland during 2014–2021. B The percentage of nine period groups in male during 2014–2021. C The percentage of nine period 
groups in female during 2014–2021. D) The percentage of nine period groups by age groups in 2014. E The percentage of nine period groups 
by age groups in 2021. F The percentage of nine period groups by occupations in 2014. G The percentage of nine period groups by occupations 
in 2021. H The percentage of nine period groups by PLADs in 2014. I The percentage of nine period groups by PLADs in 2021. Notes: PLADs, 
provincial‑level administrative divisions
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1–16 days, and had a protective effect at lag 42 days 
and later. High ARH (> 82.17%) had a risk effect on TB 
at lag 14 days and later (Fig. 8B). The protective effect of 
extreme low (< 2.79 m/s), low (< 3.65 m/s), high (> 5.71 
m/s), and extreme high (> 8.24 m/s) AWS on TB at lag 12 
days later, 20 days later, 1–12 days and 1–12 days respec-
tively (Fig.  8C). Extreme low (< 0.004 h) and low SD 
(< 6.18 h) had a risk effect at lag 10 days and later. High 
SD (> 8.75 h) had a protective effect at 1–16 days and 
39–60 days, and extreme high SD (> 11.19 h) had a pro-
tective effect at 1–6 days (Fig. 8D). High (> 1.78 mm) and 

extreme high (> 14.74 mm) PRE had a risk effect at 44–60 
days and 42–60 days respectively (Fig. 8E).

Extreme low Atemp (< -6.76 ℃) contributed to 1.07% 
of all TB incidence, and high Atemp (> 16.69 ℃) was 
associated with a 20.02% decrease in TB incidence 
(Fig. 9A). Low ARH (< 71.73%) attributable to 18.50% of 
the TB incidence decrease, while high ARH(> 71.73%) 
attributable to 7.76% of TB incidence without statistical 
significance (Fig.  9B). The low AWS (< 4.52 m/s) attrib-
utable to 4.59% of the TB incidence decrease, while the 
high AWS (> 4.52 m/s) attributable to 11.50% of the TB 

Fig. 6 The proportion of etiologically confirmed cases by gender, age groups, occupations and PLADs during 2014–2021. Notes: PLADs, 
Provincial‑level administrative divisions

Fig. 7 The cumulative effects of Atemp, ARH, AWS, SD and PRE on the risk of TB incidence. Notes: RR, Relative risk; Atemp, Average temperature; 
ARH, Average relative humidity; AWS, Average wind speed; SD, Sunshine duration; PRE, Precipitation. The median value was reference



Page 11 of 15Deng et al. Infectious Diseases of Poverty           (2024) 13:34  

incidence without statistical significance (Fig.  9C). The 
low SD (< 6.18 h) attributable to 7.64% of the TB inci-
dence (Fig.  9D). The low PRE (< 0.08 mm) attributable 
to 12.51% of the TB incidence and high PRE (> 0.08 mm) 
attributable to 13.33% of the TB incidence decrease, both 
without statistical significance (Fig. 9E).

Relationships between demographic, medical and health 
resources, and economic factors and TB incidence
The Moran’s I statistics and Moran scatter plots showed 
the positive autocorrelation of TB incidence rates, indi-
cating that a spatial panel data model should be used 
(Additional file: Supplement Table  7 and Fig. S3). The 
SDM with a time fixed effect was chosen based on LM, 
LR and Wald tests, AIC, BIC and R2 of models (Addi-
tional file: Supplement Tables 8–10).

The SDM with a time fixed effect showed positive 
associations between TB incidence rates and sex ratio 
(β = 1.98), number of beds in medical and health institu-
tions per 10,000 population (β = 0.90), and total health 
expenses (β = 0.55). There were negative associations 
between TB incidence rates and population (β = -1.14), 

population density (β = -0.19), urbanization rate 
(β = -0.62), number of medical and health institutions 
(β = -0.23), and number of health technicians per 10,000 
population (β = -0.70). No statistically significant corre-
lation was found between TB incidence rates and GDP, 
natural population growth rate (P > 0.05) (Table 2).

Discussion
This groundbreaking nationwide study assesses the rela-
tionship between TB incidence and various factors, 
encompassing meteorological, demographic, medical and 
health resource, and economic aspects, utilizing China’s 
national surveillance data. It also delves into TB epide-
miological characteristics and diagnostic capabilities. Key 
findings are as follows:

Noteworthy declines were observed in TB incidence 
rates from 2014 to 2021, the diagnostic ability have 
improved significantly. The great achievement is attribut-
able to mass efforts and public health interventions, for 
instance, TB prevention and control strategy, the increas-
ing TB funds, the improvement of surveillance, and social 

Fig. 8 The lag‑response curves for  P5,  P25,  P75,  P95 of variables on TB incidence at lag 1–60 days. Notes:  P5, the 5th percentile;  P25, the 25th percentile; 
 P75, the 75th percentile;  P95, the 95th percentile; Atemp, Average temperature; ARH, Average relative humidity; AWS, Average wind speed; SD, 
Sunshine duration; PRE, Precipitation; RR, Relative risk. The median value was reference
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progress [25–27]. However, there were still some higher 
risks among males, farmers and individuals aged 65 years 
and older, as well as some geographical locations. Com-
plex interactions among biological, social, cultural, and 

economic factors contribute to gender and age varia-
tions in TB incidence [28, 29]. The farmers account for 
the majority of all reported cases, which consistent with 
other studies [8, 30]. The physical condition, limited 

Fig. 9 The AF of Atemp, ARH, AWS, SD and PRE on the risk of TB incidence. Notes: Low value refers to value below the median  (P50), dividing 
into mild low value  (P5–P50) and extreme low value (<  P5). High value refers to value above the median  (P50), dividing into mild high value  (P50–P95) 
and extreme high value (>  P95). AF, Attributable fraction; Atemp, Average temperature; ARH, Average relative humidity; AWS, Aaverage wind speed; 
SD, Sunshine duration; PRE, Precipitation;  P5, the 5th percentile;  P50, the 50th percentile;  P95, the 95th percentile; CI, Confidence interval. The median 
value was reference

Table 2 The effects of demographic, medical and health resource, and economic factors on TB incidence by SDM with a time fixed 
effect

SDM Spatial Durbin model, CI Confidence interval

Variables β 95% CI Z P

Log10(population) ‑1.14 ‑1.94, ‑0.34 ‑2.78 0.005

Log10(population density) ‑0.19 ‑0.28, ‑0.10 ‑4.31 < 0.001

Log10(natural population growth rate) ‑0.01 ‑0.04, 0.02 ‑0.75 0.46

Log10(urbanization rate) ‑0.62 ‑1.21, ‑0.03 ‑2.07 0.04

Log10(sex ratio) 1.98 0.71, 3.25 3.05 0.002

Log10(number of medical and health institutions) ‑0.23 ‑0.41, ‑0.06 ‑2.67 0.008

Log10(number of health technicians per 10,000 population) ‑0.70 ‑1.30, ‑0.09 ‑2.27 0.02

Log10(number of beds in medical and health institutions per 10,000 
population)

0.90 0.35, 1.45 3.19 0.001

Log10(total health expenses) 0.55 0.06, 1.05 2.18 0.03

Log10(GDP) ‑0.20 ‑0.49, 0.09 ‑1.35 0.18

rho 0.27 0.07, 0.47 2.63 0.008

sigma2_e 0.05 0.04, 0.07 9.56 < 0.001
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health services and patient management in rural areas, 
and a shortage of TB awareness could contribute to the 
higher TB incidence among the farmer [31].

Spatiotemporal analysis showed that the clusters with 
higher incidence were mainly in several PLADs in western 
areas. The limited health services and patient management, 
less developed socioeconomic infrastructure, and incon-
venient transportation conditions in western areas increase 
the difficulties for TB control and care [8]. Importantly, the 
TB incidence of most PLADs showed a downward trend, 
of which Gansu, Guangxi, and Xinjiang were with higher 
AAPC. The faster decline in these areas is more likely attrib-
uted to comprehensive interventions [25, 32]. For example, 
the incidence of Gansu, which is one of the PLADs with 
lower socioeconomic conditions, decreased faster. The main 
reason is that the government has taken a series of inter-
vention measures to control TB, such as strengthening the 
monitoring and reporting system, improving the diagnosis 
and treatment of TB, and increasing funding investment 
[32]. With economic development and social progress, peo-
ple’s living standards have improved, all of which contribute 
to reducing the incidence rate of TB. Continuous efforts are 
still needed to end TB as soon as possible.

Improvements in diagnostic ability and reporting 
were evident, with a shortened period from TB onset to 
diagnosis, especially in farmers. The early diagnosis was 
greatly benefit for promoting the treatment success and 
reducing TB transmission. The period of most PLADs 
shortened from 2014 to 2021, but remained unchanged in 
several PLADs which should be further strengthened the 
efforts. Furthermore, the proportion of etiologically con-
firmed cases increased from 31.31% in 2014 to 56.98% in 
2021. The males and the older were with the higher pro-
portion of etiologically confirmed cases, which is great 
benefit for TB control among the high-risk populations. 
It is worth noting that the proportion of etiologically con-
firmed cases remains low in some western regions with 
high incidence rates. So, it’s urgent to develop the simple, 
accurate and suitable TB diagnostic tools for earlier TB 
detection and intervention effectively.

Although only limited evidence is currently available 
regarding the association between meteorological factors 
and TB incidence at the nationwide in China, the findings 
of the present study are basically consistent with existing 
reports that Atemp, ARH, AWS, PRE and SD were asso-
ciated with TB incidence [4, 10, 11, 14, 33, 34]. A study 
conducted in 16 cities in Anhui province reported that 
low temperature increased the risk of TB hospitalizations 
[34]. Our nationwide study, basing on prefecture-level 
and daily time scales, found low Atemp (< 16.69 ℃), high 
ARH (> 71.73%), and low SD (< 6.18 h) increased the risk 
of TB incidence. Previous study showed temperature and 
relative humidity were found as the vital factors for the 

formation of droplet diameter influencing the contain-
ing pathogens [35]. Clearly, Mycobacterium tuberculosis 
(Mtb), the pathogen of TB, is more likely to survive in the 
environment with low temperature and high humidity 
[10]. The short sunshine duration could reduce the UV 
rays, increasing the degree of low temperature and high 
relatively humidity, which contribute to Mtb survive in 
the environment. Also the specific meteorological condi-
tions may influence the human body function and immu-
nity [34, 36]. We found extreme low wind speed decrease 
the risk of TB incidence. But a previous study reported 
the low wind speed is a risk factor of TB, the high wind 
speed is a protective factor of TB [10]. The wind speed 
is a biphasic factor for TB incidence, which is difficult 
to clarify the impact on TB incidence. On the one hand, 
wind speed was benefit for the spreading of Mtb; on the 
other hand, wind speed could facilitate air circulation to 
avoid infection [37].

Several studies shown that urbanization [37], the num-
ber of health physicians [13], population density [30], and 
number of beds in medical institution [13, 30] are associ-
ated with the TB incidence. We explored the ten factors 
from demographic, medical and health resource, and eco-
nomic aspects. Population, population density and urbani-
zation rate were negatively related to TB incidence, which 
is consistent with the previous study [30]. The PLADs with 
better development level and economic situations are usu-
ally with higher population density and urbanization rate, 
leading to the higher accessibility for medical services and 
better living standards [13, 30]. The number of medical 
and health institutions, number of health technicians per 
10,000 population were negatively related to TB incidence, 
indicating higher accessibility for medical services contrib-
ute to the TB control. The total health expenses is a fac-
tor reflects health and economic aspects. We found total 
health expenses was positively related to TB incidence, 
indicating the areas with higher TB incidence were prone 
to higher total health expenses. The total health expenses 
reflects the importance and cost burden level of health 
care by the government, society, and individual residents 
under certain economic conditions, as well as the main 
characteristics of health financing models and the fairness 
and rationality of health financing [38]. So, the improved 
investment and capacity-building for medical and health 
construction would benefit for TB control and prevention. 
The data was from passive surveillance system, the poten-
tial variations in reporting across regions and levels are 
limitations in this study.

Conclusions
China has made great achievements in TB control 
and prevention, but challenges persist in specific 
populations and regions. This study emphasizes the 
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importance of addressing meteorological, demo-
graphic, medical and health resource, and economic 
factors on TB incidence. Based on the findings, com-
bining with the situation in different areas, the com-
prehensive digital/intelligent surveillance and response 
should be strengthened for earlier detecting the risk 
factors and taking interventions effectively.
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