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Abstract 

Background Dengue fever (DF) has emerged as a significant public health concern in China. The spatiotemporal 
patterns and underlying influencing its spread, however, remain elusive. This study aims to identify the factors driving 
these variations and to assess the city-level risk of DF epidemics in China.

Methods We analyzed the frequency, intensity, and distribution of DF cases in China from 2003 to 2022 and evalu-
ated 11 natural and socioeconomic factors as potential drivers. Using the random forest (RF) model, we assessed 
the contributions of these factors to local DF epidemics and predicted the corresponding city-level risk.

Results Between 2003 and 2022, there was a notable correlation between local and imported DF epidemics in case 
numbers (r = 0.41, P < 0.01) and affected cities (r = 0.79, P < 0.01). With the increase in the frequency and intensity 
of imported epidemics, local epidemics have become more severe. Their occurrence has increased from five to eight 
months per year, with case numbers spanning from 14 to 6641 per month. The spatial distribution of city-level DF 
epidemics aligns with the geographical divisions defined by the Huhuanyong Line (Hu Line) and Qin Mountain-Huai 
River Line (Q-H Line) and matched well with the city-level time windows for either mosquito vector activity (83.59%) 
or DF transmission (95.74%). The RF models achieved a high performance (AUC = 0.92) when considering the time 
windows. Importantly, they identified imported cases as the primary influencing factor, contributing significantly 
(24.82%) to local DF epidemics at the city level in the eastern region of the Hu Line (E–H region). Moreover, imported 
cases were found to have a linear promoting impact on local epidemics, while five climatic and six socioeconomic 
factors exhibited nonlinear effects (promoting or inhibiting) with varying inflection values. Additionally, this model 
demonstrated outstanding accuracy (hitting ratio = 95.56%) in predicting the city-level risks of local epidemics 
in China.

Conclusions China is experiencing an increasing occurrence of sporadic local DF epidemics driven by an unavoida-
bly higher frequency and intensity of imported DF epidemics. This research offers valuable insights for health authori-
ties to strengthen their intervention capabilities against this disease.
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Background
Dengue fever (DF) is an acute infectious disease caused 
by the dengue virus and is transmitted by Aedes albopic-
tus and Aedes aegypti [1]. DF is naturally widely distrib-
uted in tropical and subtropical regions worldwide (e.g., 
Southeast Asia, the Western Pacific, and South Africa) 
[2], causing approximately one-third of the global popu-
lation to be exposed to this disease [3]. Due to the impact 
of globalization and climate change in recent years, the 
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increasing incidence and range of DF epidemics have 
become significant public health concerns.

Epidemics of DF in China are mainly caused by 
imported cases from natural foci around the world. No 
DF cases were reported between 1949 and 1978; how-
ever, China has experienced an intermittent DF epidemic 
since the sudden outbreak in Foshan, Guangdong Prov-
ince in 1978 [4]. Since the 1990s, DF has been included 
in the list of notifiable communicable diseases [5]. In 
recent years, local DF outbreaks have increased substan-
tially due to an increase in imported cases caused by the 
increasing severity of global DF epidemics and China’s 
growing significance in international trade and econ-
omy [6, 7]. Moreover, DF epidemics have expanded geo-
graphically from southern China (southwest border and 
southeast coastal areas) toward northern inland regions, 
such as Jiangxi (Yichun), Chongqing, Henan (Xuchang), 
and Shandong (Jining) [8, 9]. Overall, the DF epidemic in 
China has shown increasingly shorter time intervals and 
apparent spatial expansion.

Numerous studies have investigated the factors that 
affect the spread and prevalence of DF at various levels, 
including dengue virus, mosquito vectors, susceptible 
populations, environmental conditions, and socioeco-
nomic status [10, 11]. Among these influencing factors, 
environmental conditions, such as climate, hydrology, 
and vegetation coverage, primarily affect the activity of 
the dengue virus and the breeding, survival, surround-
ings, and biting behavior of mosquito vectors [12, 13]. 
Socioeconomic factors, such as population density and 
mobility, land use, accessibility of public transportation, 
residents’ income level, and living habits, chiefly influ-
ence the probability of human-mosquito contact [14, 15]. 
In general, the transmission and prevalence of DF are 
complex and involve intricate geo-ecological processes.

Previous studies on the spatial and temporal varia-
tions in DF epidemics at various scales and their influ-
encing factors have strongly supported DF prevention 
and control in the absence of effective clinical vaccines 
and improved our understanding of the prevalence and 
spread of the disease in China [16, 17]. However, ques-
tions remain regarding the future of China’s DF epidemic, 
especially in the absence of an effective vaccine and the 
presence of inextirpable DF foci worldwide. First, is a DF 
epidemic unavoidable in China in the future? Second, 
what factors control the spatial expansion of local epi-
demics? Finally, how can we reliably predict the risk of 
local DF epidemics?

Thus, we conducted this study to 1) characterize the 
spatiotemporal situation of China’s DF epidemic at the 
city level, 2) quantify the contributions of various envi-
ronmental and socioeconomic factors to the occurrence 
of local DF epidemics via random forest (RF) modeling, 

and 3) predict the city-level risk of local DF epidemics in 
China.

Methods
Data on dengue cases
Cases of DF in China were sourced from the National 
Infectious Disease Surveillance System from 2003 to 
2022. The dataset contains information about each 
patient’s date of onset, residential address, and report-
ing address. The cases were classified as imported or 
local according to their origin. Imported cases were those 
occurring in individuals who had traveled to a dengue-
endemic country or region within 14 days before the 
onset of the disease. The number of imported cases was 
preliminarily considered an important influencing fac-
tor since it constantly triggered local DF transmission 
in China. Local cases were those occurring in individu-
als who had not left the city within 14 days before the 
onset of the disease or those who had left the city within 
14 days before the onset of the disease and visited other 
domestic dengue epidemic cities [18]. An epidemic out-
break was defined as the occurrence of three or more 
local cases within the maximum incubation period (14 
days) in a city. If no local cases were reported within 14 
days after the outbreak, the outbreak was considered to 
have ended. The duration from the beginning of a local 
DF outbreak to its end was referred to as the outbreak 
period. After filtering isolated local cases occurring out-
side the outbreak period, imported and local cases were 
aggregated at the city level according to the address codes 
of the cases.

Potential influencing factors
According to previous studies [10–15], we identified 
11 potential influencing factors, including six socio-
economic and five meteorological factors (Table 1). The 
mean values of gross domestic product (GDP) and popu-
lation density (Pop) within each city were retrieved from 
yearly 1 km × 1 km raster data; percentages of four land-
use types (cropland, forest, water, and impervious) were 
extracted from yearly 30 m × 30 m gridded data for each 
city during 2003–2022. Moreover, the monthly average 
values of each meteorological element within each city, 
such as the maximum temperature (Tmax), minimum 
temperature (Tmin), average temperature (Tmean), aver-
age relative humidity (RH), and precipitation (Prec), were 
extracted from monthly 1 km × 1 km gridded climatic 
data. The annual mean values of these five climatic ele-
ments were further calculated based on the monthly 
average values at the city level. These data were pro-
cessed using zonal statistics and spatial connectivity tools 
in ArcGIS 10.6 (ESRI, Redlands, CA, USA). If data were 



Page 3 of 15Ren and Xu  Infectious Diseases of Poverty           (2024) 13:50  

missing for certain years, data of an adjacent year were 
used as a replacement.

As illustrated in Additional file 1: (Fig. S2), the above 11 
city-level variables presented obvious spatial differences 
around two famous geographical dividing lines, namely, 
the Huhuanyong Line (Hu Line) and Qin Mountain-Huai 
River Line (Q-H Line) [19, 20]. For example, the city-level 
population density in the eastern region of the Hu Line 
(E–H region) was much greater than that in the west-
ern region of the Hu Line (W–H region). Moreover, two 
subregions around the Q-H Line, the northern region 
(N-QH region) and the southern region (S-QH region), 
were identified due to their marked differences in mete-
orological conditions.

Descriptive analysis of the frequency and intensity of DF 
epidemics in China
The numbers of local and imported cases were aggre-
gated annually from 2003 to 2022, and the relationships 
between local and imported cases were analyzed using 
Spearman correlation analysis. The cities with imported 
or local epidemics were categorized into four groups: 
cities experiencing either imported or local epidemics, 
cities experiencing both types of epidemics, cities experi-
encing only imported epidemics, and cities experiencing 
only local epidemics. Moreover, we explored the spatial 
distribution characteristics of these cities in different 

groups, and investigated the Spearman correlation coef-
ficients between the numbers of cities experiencing 
local epidemics and the numbers of cities experiencing 
imported epidemics each year across China. In addition, 
two indicators, namely, the frequency and intensity of DF 
epidemics, were established to characterize their spatial 
and temporal variations at the country and city levels 
(Table  2), providing a comprehensive understanding of 
China’s DF epidemics.

Retrieval of time windows
The suitability of environmental conditions, including 
temperature, humidity, and precipitation, is a crucial 
determinant of mosquito breeding and activities, which 
in turn affects the spread of local epidemics. Previous 
studies have shown that monthly minimum temperatures 
exceeding 10°C [21–23], monthly average temperatures 
between 15°C and 32°C [24, 25], monthly maximum tem-
peratures below 38°C [22, 23], monthly average relative 
humidity between 60% and 90% [26, 27], and monthly 
precipitation between 60 mm and 650 mm [28, 29] are 
conducive to Aedes mosquito breeding. Accordingly, 
we defined the periods during which all these condi-
tions were met as the time windows for mosquito vector 
activity. To account for the incubation periods of dengue 
viruses [30], we postponed the ending time of the time 
windows for mosquito vector activity by one month while 

Table 1 Data collection and sources used in this study

Data group Selected variables from previous 
studies

Data unit Time scale Resolution Source

Number of imported cases (Imported 
cases)

Cases Annual City level The National Infectious Disease Surveil-
lance System

Socioeconomic
factors

Gross domestic product per capita (GDP) 
[10, 14]

Million dollars/km2 Annual 1 km The Scientific Data (https:// doi. org/ 10. 
6084/ m9. figsh are. 17004 523. v1)
The WorldPop (https:// hub. world pop. org/)
Earth System Science Data (https:// doi. 
org/ 10. 5281/ zenodo. 58165 91)

Population density (Pop) [10, 14, 15] Persons/km2 Annual 1 km

Annual average percentage of cropland 
(Cropland) [15]

% Annual 30 m

Annual average percentage of forest 
(Forest) [15]

% Annual 30 m

Annual average percentage of water 
(Water) [15]

% Annual 30 m

Annual average percentage of impervi-
ous (Impervious) [15]

% Annual 30 m

Natural
factors

Average monthly maximum air tempera-
ture (Tmax) [11, 12]

Degree Celsius Monthly 1 km Earth System Science Data
(https:// doi. org/ 10. 5281/ zenodo. 51122 32)
National Earth System Science Data Center
(http:// www. geoda ta. cn)
National Tibetan Plateau/Third Pole 
Environment Data Center (https:// data. 
tpdc. ac. cn/)

Average monthly mean air temperature 
(Tmean) [11–13]

Degree Celsius Monthly 1 km

Average monthly minimum air tempera-
ture (Tmin) [11, 12]

Degree Celsius Monthly 1 km

Average monthly mean relative humid-
ity (RH) [13]

% Monthly 1 km

Average monthly precipitation (Prec) 
[11–13]

0.1 mm Monthly 1 km

https://doi.org/10.6084/m9.figshare.17004523.v1
https://doi.org/10.6084/m9.figshare.17004523.v1
https://hub.worldpop.org/
https://doi.org/10.5281/zenodo.5816591
https://doi.org/10.5281/zenodo.5816591
https://doi.org/10.5281/zenodo.5112232
http://www.geodata.cn
https://data.tpdc.ac.cn/
https://data.tpdc.ac.cn/
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keeping the beginning time unchanged and accepted 
them as the time windows for local DF transmission. To 
evaluate the effectiveness of the time windows, we calcu-
lated the match degree using the following formula:

where D is the match degree, n refers to the number of 
local DF outbreaks that occurred within the time win-
dows, and N  refers to the total number of local DF 
outbreaks. A higher match degree indicates a greater 
proportion of local DF outbreaks occurring within the 
time window.

Identification of the driving forces of local DF epidemics 
at the city level
We transformed the number of local cases in a year into 
a binary variable (0 = absence and 1 = presence or occur-
rence) and used it as the dependent variable, whereas the 
number of imported cases within the time windows was 
used as an independent variable at the city level. Moreo-
ver, we considered six socioeconomic factors and five 
meteorological elements (i.e., their average values in the 
months within the time windows). The correlation coeffi-
cients between the occurrence of local DF epidemics and 
the input variables were determined using the Spearman 
method before identifying the driving forces of local DF 
epidemics.

The RF, gradient boosting machine (GBM), and sup-
port vector machine (SVM) methods are powerful 
machine learning methods for classification and regres-
sion [31–33] and are typically employed to fit the rela-
tionships between local epidemics and their influencing 
factors and identify the driving forces of DF. In this 
study, the data from 2003 to 2018 were divided into a 
training set (70%) and a test set (30%), while the data 
from 2019 to 2022 were used as the prediction set. In 
the RF model, the number of trees to grow was the main 
parameter, and we used a range of tree numbers (from 
100 to 2000, step = 100) to select the optimal parameter 

D = n/N × 100%

according to model performance. In the GBM model, 
the number of trees to grow and the learning rate were 
the main parameters, and we used a range of tree num-
bers (from 100 to 2000, step = 100) and learning rates 
(from 0.01 to 0.2, step = 0.01). In the SVM model, we 
applied “rbf” as the kernel function and used a range of 
regularization parameters (from 0.1 to 3, step = 0.1) and 
kernel coefficients (from 0.01 to 0.5, step = 0.01). We 
performed fivefold cross-validation on all three models 
to increase the modeling stability. The area under the 
curve (AUC) of the receiver operating characteristic 
(ROC) curve was used to measure the model’s predic-
tive ability [34]. In this study, the AUC values were clas-
sified as follows: 0.50–0.70, indicating a poor model; 
0.70–0.80, suggesting an average model; and 0.80–1.00, 
reflecting a good model [35, 36]. We selected an opti-
mal model from the above three models. In addition, 
to analyze the impact of the time windows, we refitted 
the models without considering the time windows and 
instead considered the number of imported cases and 
the average values of meteorological factors throughout 
the year.

As a valuable parameter of model evaluation, the 
SHapley Additive exPlanations (SHAP) values (i.e., 
global and local values) are widely utilized to inter-
pret the results derived from various machine learning 
models [37–39]. We employed SHAP values to quantify 
the contributions of various factors and driving forces 
to local epidemics. A direct relationship was observed 
between the absolute value of a variable’s global SHAP 
and its contribution to the model; i.e., a larger absolute 
value of a variable’s global SHAP corresponded to a 
greater contribution by that variable to the model. In 
contrast, the local SHAP values of each variable repre-
sent its driving force on local epidemics. Positive SHAP 
values indicate the promoting effects of the variable, 
with larger values representing stronger promoting 
influences. In contrast, negative SHAP values indicate 
the inhibiting effects of the variable, with smaller values 

Table 2 Definition of the frequency and intensity of dengue fever epidemics

Indicators Spatial unit Definition

Frequency City Annual number of months experiencing dengue fever epidemics

Annual number of local dengue fever outbreaks

Countrywide Annual number of months experiencing dengue fever epidemics

Annual number of local dengue fever outbreaks

Intensity City Average number of cases in the months experiencing dengue fever epidemics

Average number of cases per outbreak

Countrywide Average number of cases in the months experiencing dengue fever epidemics

Average number of cases per outbreak
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indicating stronger inhibiting effects. In this study, we 
utilized the sklearn and shap packages in Python 3.7.4 
(Python Software Foundation, Delaware, USA) to con-
struct and interpret the models.

Predicting the occurrence probability of local DF epidemics 
at the city level
The optimal models were built and evaluated using the 
AUC values considering the time windows for local DF 
transmission and utilized to predict the probability of 
city-level occurrence of local DF epidemics in the E–H 
region from 2019 to 2022. Then, the city-level probability 
was classified into five levels to indicate the risk of local 
DF epidemics in each city, ranging from the highest to 
the lowest: 0.80–1, 0.60–0.80, 0.40–0.60, 0.20–0.40, and 
0–0.20. Moreover, the accuracy of these prediction mod-
els was assessed using the hitting ratios in terms of the 
percentages of cities with actual local DF epidemics from 
2019 to 2022 in those identified by the models. A direct 
relationship was observed between the hitting ratio of 
the prediction model and the capacity of the model to 
predict risk of local DF epidemics at the city level; i.e., a 

higher hitting ratio of a prediction model corresponded 
to a stronger capacity to predict the risk of local DF epi-
demics at the city level.

Results
Current situation of DF epidemics in China
From 2003 to 2022, a total of 329 DF outbreaks occurred 
within 104 months with 98,560 DF cases in China; the 
number of DF outbreaks displayed an overall upward 
trend, while the numbers of both imported and local DF 
cases sharply decreased from 2020 to 2022 (Fig. 1a). The 
proportions of local DF cases were much greater than 
those of imported cases over 15 years, especially since 
2012 (Fig. 1b). At the city level, the numbers of local DF 
cases in China were increasingly closely associated with 
those of imported cases from 2003 to 2012 (r = 0.23, 
P < 0.01), 2013 to 2022 (r = 0.44, P < 0.01), and 2003 to 
2022 (r = 0.41, P < 0.01).

Moreover, an increasing number of cities are affected 
by DF epidemics. Despite an acute decrease in DF 
between 2020 and 2022, the numbers of cities with 
imported or local epidemics, both types of epidemics, 

Fig. 1 Temporal variations in dengue fever epidemics in China during 2003–2022. a Yearly numbers of total, imported, and local DF cases; b Yearly 
proportions of imported and local DF cases to total cases, and the ratio of local cases to imported cases; c Yearly numbers of cities with different 
DF epidemics; d Yearly proportions of cities with different DF epidemics in the S-QH region. DF Dengue fever; S-QH region The southern region 
of the Q-H Line
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or only imported epidemics displayed similar temporal 
variations (Fig. 1c). In contrast, the number of cities with 
only local epidemics remained below 3, except for 8 cities 
in 2014 (Fig. 1c). Nevertheless, the number of cities expe-
riencing local epidemics was significantly associated with 
the number of cities experiencing imported epidemics at 
the national level (r = 0.79, P < 0.01).

China’s DF epidemic also displayed obvious temporal 
variations in frequency and intensity. As illustrated in 
Fig. 2a, the frequency of imported DF epidemics was less 
than 9 months per year before 2006 and then increased 
rapidly to 11 months per year or more since 2007, with a 
decrease to 9 months in 2021–2022. In comparison, the 
frequency of local epidemics exhibited a relatively slow 
and fluctuating uptrend, varying from 0 to 8. However, in 
terms of intensity, local DF epidemics were more severe 
(from 14 to 6641 cases per month) than imported DF epi-
demics (from one to 496 cases per month), despite the 
latter displaying a steadier and quicker increase (Fig. 2b). 
In addition, another frequency (i.e., the times of local 
DF outbreaks per year) presented a clear uptrend, and 
its intensity (i.e., the number of local DF cases per time) 

has remained higher than 100 cases per time since 2012 
(Fig. 2c). These analyses showed that local DF epidemics 
in China have become increasingly severe over time as 
the number of imported DF cases has increased.

Geographical distribution of the DF epidemic
The distributions of the cities with DF epidemics were 
spatially featured across China. As illustrated in Addi-
tional file 1: (Fig. S4), the vast majority (96–100%) of the 
cities with imported or local epidemics were distributed 
in the E–H region. Among them, more than 75% were 
located in the S-QH region and displayed a downward 
trend from 2012 (Fig. 1d), implying that China’s DF epi-
demics were expanding toward the N-QH region. More-
over, the overwhelming majority of the cities with both 
imported and local epidemics were located in the S-QH 
region (Fig.  1d). In comparison, most of the cities with 
only imported epidemics were located in the E–H region, 
while those with only local epidemics were much fewer.

Moreover, the frequency and intensity of imported 
and local DF epidemics presented geographical dispari-
ties at the city level. The cities with an average frequency 

Fig. 2 Temporal variations in the frequency and intensity of dengue fever epidemics in China from 2003 to 2022. a The frequencies of imported 
DF epidemics and local DF epidemics; b The intensities of imported DF epidemics and local DF epidemics; c Temporal variations in the frequency 
and intensity of local DF outbreaks. DF Dengue fever
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of imported epidemics greater than one month per year 
were mainly distributed in the E–H region (Additional 
file  1: Fig. S5a). A few cities with an average frequency 
much greater than 1.5 months per year were sparsely 
located, especially in the S-QH region. In contrast, fewer 
cities had an average frequency of local epidemics greater 
than 0.5 months per year and were mainly concentrated 
in the S-QH region (Fig. 3a). Similarly, the cities with a 
relatively high intensity of imported epidemics were 
mainly located in the S-QH region (Additional file 1: Fig. 
S5b), whereas those with a relatively high intensity of 
local epidemics were sparsely distributed in this region 
(Fig.  3b). Notably, provincial capitals often had a much 
higher frequency and intensity of imported epidemics, 
and some inland cities, such as Ji’an, Yichun, Chongqing, 
and Hangzhou, had the highest intensity of local epidem-
ics despite a relatively lower frequency (Fig. 3b).

Time windows for local DF epidemics
The city-level time windows for local DF transmission 
exhibited obvious spatial differences on either side of 
the Hu Line and Q-H Line (Additional file  1: Fig. S7). 
No time windows were observed in most of the cities in 
the W–H region throughout the year, whereas the cit-
ies in the E–H region presented various durations of 
time windows for local DF transmission. Furthermore, 
the city-level time windows in the E–H region exhib-
ited significant geographical variation when compared 
to the S-QH and N-QH regions because of differences 
in their beginning and ending months as well as dura-
tions (Fig.  4a). In the N-QH region, the time windows 
often opened relatively later (beginning in June–July) 
and closed earlier (ending in September–October), and 

a few cities occasionally closed their time windows in 
some years (e.g., 2003–2004, 2006–2007, 2009–2011, and 
2014–2016). In contrast, the time windows in the S-QH 
region began earlier (April–May) and ended later (Octo-
ber–November). As a result, these two regions exhibited 
long (seven or eight months in the S-QH region) or short 
(three or four months in the N-QH region) durations of 
time windows. Similarly, the city-level time windows for 
mosquito vector activity were also obviously spatially dif-
ferentiated between the S-QH and N-QH regions due to 
the variations in their durations (Fig. 4b). Regarding the 
match degree, the time windows for local DF transmis-
sion were much greater (95.74%) than those for mosquito 
vector activity (83.59%), although the time windows for 
mosquito vector activity displayed similar spatial differ-
ences at the city level (Additional file 1: Fig. S6).

Analysis of the relationships among the time windows
Within the time windows for local DF transmission 
in the E–H region, the occurrence of local DF epi-
demics showed a significant positive correlation with 
imported cases (r = 0.42, P < 0.01) and most of the natu-
ral and socioeconomic factors (Table 3), except for Crop-
land (r = -0.14, P < 0.01). In contrast, the relationships 
observed in the S-QH and N-QH regions differed. Local 
DF epidemics were significantly negatively associated 
with Forest (r = -0.09) in the S-Q region and positively 
associated with only three factors in the N-Q region, 
namely, imported cases (r = 0.12), GDP (r = 0.08), and 
Pop (r = 0.08), at a significance level of 0.01.

Furthermore, RF models were utilized to explore the 
relationships between the occurrence of local DF epi-
demics and influencing factors at the city level because of 

Fig. 3 The distribution of the frequency and intensity of local dengue fever epidemics at the city level during 2003–2022. a The frequency; b The 
intensity. Hu Line The Huhuanyong Line; Q-H Line The Qin Mountain-Huai River Line. Map approval No.: GS (2024)2127
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Fig. 4 The durations from the beginning to the ending months of time windows in the S-QH and N-QH regions during 2003–2022. a Average 
beginning and ending months of time windows for local DF transmission; (b) Average beginning and ending months of time windows 
for mosquito vector activity. DF Dengue fever; S-QH region The southern region of the Q-H Line; N-QH region The northern region of the Q-H Line; 
Hu Line The Huhuanyong Line; Q-H Line The Qin Mountain-Huai River Line

Table 3 Correlation coefficients between the occurrence of local dengue fever epidemics and potential influencing factors

Imported cases Number of imported cases, GDP Gross domestic product, Pop Population density, Cropland Annual average percentage of cropland, Forest Annual 
average percentage of forest, Water Annual average percentage of water, Impervious Annual average percentage of impervious, Tmax Average monthly maximum 
air temperature, Tmean Average monthly mean air temperature, Tmin Average monthly minimum air temperature, RH Average monthly mean relative humidity, Prec 
Average monthly precipitation, E–H region The eastern region of the Hu Line, N-QH region The northern region of the Q-H Line, S-QH region The southern region of the 
Q-H Line
a  and b indicates this value is significant at the level of 0.01 and 0.05

Data group Variable name Correlation coefficients

The E–H region The N-QH region The S-QH 
region

Socioeconomic factors Imported cases 0.42a 0.12a 0.45a

GDP 0.17a 0.08a 0.25a

Pop 0.14a 0.08a 0.18a

Cropland -0.14a 0.01 -0.09a

Forest 0.10a -0.01 0.01

Water 0.13a 0.02 0.11a

Impervious 0.06a 0.06b 0.18a

Natural factors Tmax 0.09a 0.02 0.11a

Tmean 0.13a 0.02 0.11a

Tmin 0.16a 0.02 0.12a

RH 0.14a -0.03 0.07a

Prec 0.21a -0.03 0.18a
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their superior ability beyond that of the GBM and SVM 
models (Additional file  1: Table  S6). According to the 
higher AUC values in Table 4, the RF models in the E–H 
region (Models 1, 2, and 3) performed considerably bet-
ter than the other models, although Model 4 also showed 
good performance in the S-QH region (AUC = 0.85). 
Moreover, the AUC slightly increased from 0.90 (Model 
3) to 0.92 (Models 1 and 2) when considering the time 
windows for either local DF transmission or mosquito 
vector activity in the E–H region. These results showed 
that RF models considering time windows could be 
rationally applied to explore the contributions of factors 
and predict the city-level risk of local DF epidemics.

Dominant influencing factors of local DF epidemics
Among the influencing factors, imported cases contrib-
uted the most to local DF epidemics in the E–H (24.82%, 
Fig.  5a) and S-QH (31.01%, Fig.  5b) regions. Moreover, 
five variables associated with much greater contributions 
included Tmin (16.88%), Forest (8.58%), Pop (7.36%), 
Prec (7.28%), and Tmean (7.14%) in the E–H region, 
which differed from those in the S-QH region (GDP, 
Pop, RH, Cropland, and Forest). In addition, natural fac-
tors (i.e., five meteorological elements) were associated 
with greater contributions (41.04%) than socioeconomic 
factors (34.15%) in the E–H region. In comparison, 
socioeconomic factors were associated with greater con-
tributions (44.26%) than natural conditions (24.74%) in 
the S-QH region.

According to the SHAP values derived from Model 
1 (Fig.  6), the imported cases and the other 11 factors 
had complex impacts (protective or risk effects) on the 
occurrence of local DF epidemics at the city level. In the 
E–H region, the promoting effect of imported cases had 
a strengthening trend as the number of imported cases 
increased (Fig. 6a). In contrast, the other 11 factors gen-
erally presented composite promoting and inhibiting 
effects. These factors were categorized into two groups: 
Group 1 (i.e., Tmin, Forest, Pop, Prec, GDP, Impervious, 
and Water), which exhibited inhibiting effects before pro-
moting effects, and Group 2 (i.e., Tmean, RH, Cropland, 
and Tmax), which exhibited promoting effects before 
inhibiting effects. Among the top five factors (Fig.  5a) 
derived from the contribution analyses, Tmin, For-
est, Pop, and Prec belonged to Group 1, with respective 
inflection values of 20  °C (Fig.  6b), 60% (Fig.  6c), 1000 

Table 4 The AUC values derived from the random forest models

Model 1 and Model 4 respectively represented the models considering the time 
windows for local DF transmission in the E–H region and the S-QH region

Model 2 and Model 5 respectively represented the models considering the time 
windows for mosquito vector activity in the E–H region and the S-QH region

Model 3 and Model 6 respectively represented the models without regard for 
the time windows in the E–H region and the S-QH region

DF Dengue fever, E–H region The eastern region of the Hu Line, S-QH region The 
southern region of the Q-H Line, AUC  Area Under the Curve

–Not applicable

Training Testing Prediction

The E–H region Model 1 0.87 0.92 0.91

Model 2 0.87 0.92 –

Model 3 0.89 0.90 –

The S-QH region Model 4 0.88 0.85 –

Model 5 0.86 0.86 –

Model 6 0.85 0.91 –

Fig. 5 Contributions of the input variables based on the global SHAP values in the model considering the time windows for local dengue fever 
transmission. a The contributions of input variables in the E–H region; b The contributions of input variables in the S-QH region. Imported cases 
Number of imported cases; Tmin Average monthly minimum air temperature; Forest Annual average percentage of forest; Pop Population density; 
Prec Average monthly precipitation; Tmean Average monthly mean air temperature; GDP Gross domestic product; RH Average monthly mean 
relative humidity; Cropland Annual average percentage of cropland; Tmax Average monthly maximum air temperature; Impervious Annual average 
percentage of impervious; Water Annual average percentage of water; E–H region The eastern region of the Hu Line; S-QH region: The southern 
region of the Q-H Line; SHAP: The Shapley Additive exPlanations
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persons per square kilometer (Fig.  6d), and 185 millim-
eters (Fig.  6e). In contrast, Tmean belonged to Group 
2, and its promoting effects became inhibitory at 21  °C 
(Fig. 6f ). Similarly, the other six factors were categorized 
into Group 1 (GDP, Impervious, and Water) and Group 
2 (RH, Cropland, and Tmax). In comparison, the fac-
tors in the S-QH region had similar composite impacts 
on the occurrence of local DF epidemics in this region 
(Additional file 1: Fig. S8), although their inflection val-
ues differed slightly from those in the E–H region. These 

analyses showed that the SHAP values were more rea-
sonable than the Spearman correlation coefficients for 
interpreting the influences of potential factors on local 
epidemics. In addition, the fact that imported cases trig-
gered local epidemics was further validated.

Predicting the risk of local DF epidemics at the city level
Due to its good performance (AUC = 0.91), Model 1 was 
utilized to predict the occurrence probability of local 
DF epidemics at the city level in the E–H region. In this 

Fig. 6 Relationships between 12 inputs and local dengue fever occurrence according to local SHAP values at the city level in the E–H region. a 
Number of imported cases (Imported cases); b Average monthly minimum air temperature (Tmin); c Annual average percentage of forest (Forest); 
d Population density (Pop); e Average monthly precipitation (Prec); f Average monthly mean air temperature (Tmean); g Gross domestic product 
(GDP); h Average monthly mean relative humidity (RH); i Annual average percentage of cropland (Cropland); j Average monthly maximum air 
temperature (Tmax); k Annual average percentage of impervious (Impervious); l Annual average percentage of water (Water). E–H region The 
eastern region of the Hu Line; SHAP The Shapley Additive exPlanations
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region, a total of 295 cities had various occurrence prob-
abilities of local DF epidemics and were then categorized 
into five groups (Table 5). Among them, 20 cities in the 
first group (0.8 < probability < 1.0) were indeed affected 
by local DF epidemics in 2019, demonstrating the highest 
hitting ratio (100%). Furthermore, the hitting ratios of the 
other four groups (i.e., 0.6–1.0, 0.4–1.0, 0.2–1.0, and 0.0–
1.0) gradually decreased to 95.56%, 79.41%, 67.65%, and 
29.15%, respectively. In comparison, the hitting ratios of 
Model 1 clearly declined during 2020–2022, although 
only one city (Guangzhou) in 2020 had the highest prob-
ability of occurrence of local DF epidemics.

The cities at various risk levels for local DF epidemics 
displayed spatial disparities in the E–H region from 2019 
to 2022. Most of the cities with the highest risk (20 cit-
ies) were located in the southeastern coastal areas (16 cit-
ies). Moreover, 25 high-risk and 23 moderate-risk cities 
were identified in the southeastern and central regions, 
respectively (Fig.  7). Thus, the above 68 cities were pri-
marily concentrated in the S-QH region. During 2020–
2022, the cities at various risk levels were also mainly 
located in this region (Additional file  1: Fig. S9). These 
results showed that the risk of local DF epidemics in the 
E–H region was appropriately predicted at the city level 
using RF models considering the time windows for local 
DF transmission.

Discussion
Since DF epidemics in China have become increasingly 
severe in recent years, it is crucial to reveal the compre-
hensive features of DF outbreaks to accurately map the 

risk. Our study analyzed the spatiotemporal situation of 
China’s DF epidemic and identified potential influencing 
factors to map the risk of city-level local DF epidemics 
using RF models. Several notable findings were obtained 
and could provide valuable insight for developing tar-
geted interventions for this disease.

Previous studies have demonstrated that DF epidem-
ics pose an increasingly severe threat in China in terms of 
incidence rates or other indices of various spatial scales 
[7, 9, 16, 40] and that local epidemics closely correlated 
with imported epidemics in recent years [41, 42]. Simi-
larly, our study revealed that DF epidemics tended to be 
unavoidable in China, especially in the E–H region. This 
finding can be explained by the following: First, imported 
epidemics seem to be inevitable in China given the 
increasingly large numbers of imported DF cases from 
endemic countries or territories (e.g., Southeast Asia and 
Central America) owing to a closer and stronger con-
nection between China and these countries/territories 
in recent years [41, 43]. In addition to some traditional 
regions (i.e., Southeast and Southwest China) that are 
frequently infected by imported epidemics [5, 6], inland 
regional hub cities (e.g., provincial capitals) character-
ized by larger airports and export-oriented economies 
are constantly confronted with an increasing number of 
inbound or outbound tourists [44, 45]. Second, local DF 
epidemics were more easily triggered by imported cases 
due to their increasing ability to initiate local DF epidem-
ics over time. Local DF epidemics in some cities (e.g., 
Guangzhou) were still caused by imported DF cases, even 
though the number of imported cases sharply decreased 

Table 5 The ability of Model 1 to predict the occurrence probability of local dengue fever epidemics at the city level in the E–H region

The probabilities, like 0.801.0, 0.60–0.80, 0.40–0.60, 0.20–0.40, and 0–0.20, were respectively categorized as the highest, high, moderate, low, and the lowest risk levels

The hitting ratio represents the percentage of NCA in NCI

NCA The number of cities with actual DF epidemics, NCI The number of cities identified, DF Dengue fever, E–H region The eastern region of the Hu Line

–Not applicable

Year Statistics of the cities Probability of local DF epidemics

0.8–1.0 0.6–1.0 0.4–1.0 0.2–1.0 0.0–1.0

2019 Number of cities identified (NCI) 20 45 68 102 295

Number of cities with actual DF epidemics (NCA) 20 43 54 69 86

Hitting ratios 100.00% 95.56% 79.41% 67.65% 29.15%

2020 Number of cities identified (NCI) 1 2 5 23 295

Number of cities with actual DF epidemics (NCA) 1 1 2 2 4

Hitting ratios 100.00% 50.00% 40.00% 8.70% 1.36%

2021 Number of cities identified (NCI) 0 1 5 17 295

Number of cities with actual DF epidemics (NCA) 0 0 0 0 1

Hitting ratios – 0.00% 0.00% 0.00% 0.34%

2022 Number of cities identified (NCI) 0 1 4 14 295

Number of cities with actual DF epidemics (NCA) 0 0 1 1 2

Hitting ratios – 0.00% 25.00% 7.14% 0.68%
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due to the strict immigration control and quarantine pol-
icies implemented in China during the COVID-19 pan-
demic in 2020–2022 [46]. Third, the spillover effect of DF 
(either imported or local cases) from traditional regions 
or inland hub cities to their surrounding cities is another 
reasonable explanation [9, 47], especially when suscep-
tible cities with sustainable environmental conditions 
demonstrate opportune time windows for local DF trans-
mission. Hence, it can be concluded that future DF epi-
demics seem to be inevitable in China. Accordingly, we 
cautiously suggest that more attention should be given 
to inland regional hub cities and their surrounding cit-
ies demonstrating time windows for local DF transmis-
sion, especially considering the ever-growing number of 
imported cases and their increasing initiating ability.

Moreover, the spatial distribution of city-level DF epi-
demics conformed to the geographical divisions of the 
Hu Line and Q-H Line in China. The city-level local 
DF epidemics were still geographically limited within 
the E–H region, especially in the S-QH region, which 
might be explained by the time windows for mosquito 
vector activity (Additional file  1: Fig. S6) since this dis-
ease was transmitted by Aedes species (Aedes albopictus 

and Aedes aegypti) in some specific phases with suitable 
environmental conditions [11, 12]. Moreover, the match 
degrees among the city-level occurrences of actual local 
epidemics and the time windows for mosquito vector 
activity or local DF transmission were satisfactory in the 
E–H region. Under these circumstances, it was reason-
able that local DF epidemics occasionally occurred in 
cities in the N-QH region with late-beginning and short-
term time windows after DF cases were imported from 
abroad or domestic regions. That is, time windows play 
a crucial and nonnegligible role in local DF epidemics in 
China. Thus, we believe that time windows provide help-
ful information for relevant departments to implement 
timely interventions for this disease.

Furthermore, the dominant influencing factors of city-
level local DF epidemics differed within the E–H (i.e., the 
N-Q and S-QH regions), which might be partially attrib-
utable to the coefficient of variation (CV) of these factors 
(Additional file  1: Table  S7). This finding was similar to 
that obtained in our earlier study of the dominant fac-
tors influencing DF epidemics in two traditional hot-
spot regions (the Pearl River Delta and the border area 
between Yunnan of China and Myanmar) [17]. Thus, it 

Fig. 7 The city-level risk of local dengue fever epidemics in 2019 in China. Hu Line The Huhuanyong Line; Q-H Line The Qin Mountain-Huai River 
Line. Map approval No.: GS (2024) 2127
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can be concluded that China’s DF epidemic is geographi-
cally restricted by time windows and spatially character-
ized by regionally distinct influencing factors. Therefore, 
we advise that health authorities in each city consider the 
status of time windows and regional attributes of poten-
tial influencing factors when planning or implementing 
efficient interventions for this disease.

In addition, our study revealed the inevitability and 
occasionality of China’s DF epidemic, which could 
improve our knowledge of the transmission and spread 
of this disease, especially in nonendemic areas such as 
China. Feasible solutions should be developed to address 
the challenges posed by the inevitability and occasional-
ity of DF epidemics. First, it is crucial to monitor over-
seas DF epidemics and promptly acquire information 
about inbound tourists from endemic areas to assess the 
situation of imported DF epidemics. Second, sufficient 
surveillance of climatic elements should be efficiently 
utilized to confirm the status of time windows for local 
DF transmission, especially in inland regional hub cities 
and their surrounding areas. The final and key point is to 
construct a robust and reliable prediction model using 
RF models that health authorities can use to implement 
targeted measures to prevent and control DF. The two 
prerequisites to this end are as follows: Natural foci of 
this disease cannot be eliminated worldwide in the short 
term; and China remains a nonendemic region for DF.

Several limitations are worth noting. First, climatic 
data with a higher temporal resolution (e.g., weekly, ten-
day) would be beneficial for more accurately character-
izing the time windows at the city level; the match degree 
between the time windows and actual stages of local DF 
epidemics may increase, and effective interventions could 
be more precisely and timely implemented. Second, the 
effectiveness of city-level time windows could be further 
validated by obtaining synchronous surveillance data of 
mosquito vectors, which could further improve the abil-
ity of RF models to fit relationships between local epi-
demics and potential factors within these time windows 
and predict city-level risk for local DF epidemics. Finally, 
as the spillover of DF cases among domestic regions 
plays a critical role in local DF transmission, it is crucial 
to propose scientifically efficient solutions to character-
ize the network of relationships among domestic cities or 
regions regarding factors such as population flows, eco-
nomic exchanges, and space–time distances.

Conclusions
China is experiencing an increasing occurrence of 
sporadic local DF epidemics driven by an unavoidably 
higher frequency and intensity of imported DF epi-
demics. This research has improved our understanding 

of the severity of DF epidemics and their influencing 
factors in China or similar nonendemic countries/ter-
ritories/regions, providing valuable insight for health 
authorities seeking to improve their intervention capa-
bilities against this disease.
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