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Abstract

Leprosy is a chronic infectious disease caused by Mycobacterium leprae. According to official reports from 121 countries
across five WHO regions, there were 213 899 newly diagnosed cases in 2014. Although leprosy affects the skin and
peripheral nerves, it can present across a spectrum of clinical and histopathological forms that are strongly influenced
by the immune response of the infected individuals. These forms comprise the extremes of tuberculoid leprosy
(TT), with a M. leprae-specific Th1, but also a Th17, response that limits M. leprae multiplication, through to lepromatous
leprosy (LL), with M. leprae-specific Th2 and T regulatory responses that do not control M. leprae replication but rather
allow bacterial dissemination. The interpolar borderline clinical forms present with similar, but less extreme, immune
biases. Acute inflammatory episodes, known as leprosy reactions, are complications that may occur before, during or
after treatment, and cause further neurological damages that can cause irreversible chronic disabilities. This
review discusses the innate and adaptive immune responses, and their interactions, that are known to affect
pathogenesis and influence the clinical outcome of leprosy.
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Introduction
Leprosy is a human chronic infectious disease caused by
the bacillus Mycobacterium leprae. It is an ancient afflic-
tion that continues to have a significant global impact
with official reports from 121 countries across five
WHO regions recording 213 899 newly diagnosed cases
in 2014 [1].
M. leprae is an alcohol acid-resistant bacilli with a

remarkedly slow replication rate that, to date, has eluded

attempts to culture it axenically in vitro [2, 3]. Although
leprosy affects the skin and peripheral nerves and can cause
irreversible impairment of nerve function and chronic
disability, it is believed that the main route of M. leprae
transmission is via the airways [4]. However, anecdotal
reports strongly suggest that trauma-related transmission is
likely, and there is also the strong suggestion of zoonotic
leprosy cases resulting from contact with armadillos and
the demonstration of environmental reservoirs such as
water sources and amoebal cysts [5, 6].
Leprosy patients can present across an extremely wide

spectrum. The Ridley and Jopling classification involves
clinical, pathological, bacilloscopic, and immunological
criteria, allowing a thorough characterization of six forms:
the polar tuberculoid (TT) and lepromatous leprosy (LL)
forms, as well the intermediate borderline tuberculoid
(BT), borderline borderline (BB), and borderline leproma-
tous (BL) forms [7–9]. A sixth classification, indeterminate
leprosy (IL), is also commonly used.
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Even after treatment, patients require regular follow-up
as they often present with tissue-damaging inflammatory
leprosy reactions or may already have permanent neuro-
logic deficit [10]. The spectral nature of the disease is
closely associated with the type of immune response in the
infected individual, making it an attractive system to inves-
tigate the immune regulation and pathogenic mechanisms,
as well as the influence of host genetics upon these [10, 11].
Indeed, studies over the past 30 years have identified
various determinants of leprosy and have illuminated the
contribution of immunopathogenesis to disease. Many gaps
remain in our knowledge and an improved understanding
would provide insight toward not only leprosy but other
infectious and immune-mediated diseases. This review
outlines the current understanding of the innate and adap-
tive immune responses against M. leprae and their role in
determining disease outcome.

Immunopathogenic mechanisms of differing
leprosy presentations
The cardinal signs of leprosy are skin lesions with
altered sensation, thickened peripheral nerves, and the
presence of alcohol acid-resistant bacilli. According to
the World Health Organization (WHO) classification,
based on smear examination or the number of lesions at
diagnosis, the patients are classified into two operational
groups that guide treatment: multibacillary (MB, more
than five skin lesions or positive smear) and paucibacillary
(PB, less than 5 lesions) [12]. Skins lesions from the
extreme PB form, TT, are hypopigmented, well-bordered
and with a low bacillary load. The extreme MB form, LL,
is characterized by poor granuloma formation, several
infiltrated skin lesions with high bacterial load. Bordeline
leprosy is characterized by multiple irregular and coales-
cent lesions, with a ‘Swiss cheese’ aspect and usually
positive baciloscopy [13]. PB leprosy patients are treated
for 6 months with a cocktail consisting of rifampicin and
dapsone. Due to their increased infection status, MB
leprosy patients are treated for 12 months with clofazi-
mine in additon to rifampicin and dapsone.
Polarization of the immune response specific toM. leprae

is an important element in the pathogenesis of leprosy and
in determining the clinical manifestation. A T helper (Th) 1
cytokine response has been documented at the lesional
levels of TT, while a Th2 cytokine response are associated
to LL forms of leprosy [14]. The immune response of TT
patients is characterized by a Th1 cytokine response (inter-
feron gamma [IFN-γ], interleukin (IL)-2, IL-15, and tumor
necrosis factor [TNF]), vigorous T-cell responses to M.
leprae antigens, and containment of the bacilli in well-
formed granulomas [2, 15]. In TT lesions, macrophages are
activated so that they resemble epithelial cells (at this point,
they are called “epithelioid cells”), and CD4+ T cells are the
predominant cell type. There is little evidence of M. leprae-

specific humoral immunity [15, 16]. In contrast, the
immune response of LL patients is characterized by a Th2
immune profile with production of IL-4 and IL-10 and acti-
vation of T regulatory cells (T reg), robust but not protect-
ive antibody production including formation of immune
complexes, and failure to restrict M. leprae growth. Com-
pared to TT, lesions from LL patients are relatively deficient
in CD4+ T cells, but rather have numerous CD8+ T cells
and macrophages heavily infected with bacilli that develop
a characteristic foamy appearance [15–19]. Palermo et al.
reported a higher number of Tregs and greater expression
of IL-10 and cytotoxic T lymphocyte antigen-4 (CTLA-4)
in LL lesions than TT lesions [20].
The balance of Th1/Th2 responses alone, however,

cannot fully explain the response in leprosy. Other T cell
subsets, such as T regulatory and Th17 cells, have been
identified as having important roles in determining host
immunity. FoxP3 positive regulatory T cells (Treg) produ-
cing TGF-β can suppress effector T cell function and were
increased in stable lepromatous patients, which may
explain the anergy associated with this leprosy clinical
form [21]. Conversely, Th17 cells produce IL-17A, IL-17F,
IL-21 and IL-22, leading to tissue inflammation and de-
struction, neutrophil recruitment, activating macrophages,
and enhancing Th1 effector cells [21–23]. Th17 cells were
first identified in experimental encephalitis and subse-
quently in rheumatoid arthritis, leishmaniasis and tubercu-
losis [21, 23]. Although several studies have demonstrated a
protective role of IL-17 against other intracellular patho-
gens and associated diseases, relatively few reports have
investigated the role of these cytokines in leprosy [21, 24].
Okada and colleagues (2015) studied families with suscepti-
bility to Candida albicans and Mycobacterium infection
and described a bi-allelic RORC mutation that resulted in
the absence of IL-17A/F–producing T cells in these individ-
uals, an impaired IFN- response to Mycobacterium [24].
Sadhu and colleagues demonstrated that Th17 cells are
more frequent in BT and TT patients, as compared to BL
and LL patients, and these cells potentiate IFN-γ produc-
tion and inhibit IL-10 production by T regulatory cells. This
suggests that Th17 cells also have a protective function
against M. leprae infection [15].
The borderline forms are immunologically dynamic.

There is a mixed histopathological aspect and a pro-
gressive reduction of the cell-mediated response from
the BT to the BB and BL forms, accompanied by more
numerous neurocutaneous lesions and increased bac-
terial load [4].
In an unusual presentation of leprosy, 5–15% of patients

can present with a pure neuritic form (PNL) characterized
by asymmetric involvement of peripheral nerves, but
absence of cutaneous manifestations. This condition may
be manifested as paresthesia or anesthesia, or a change in
muscle strength [20].
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Contribution of early events in defining clinical
outcome
The innate immune response appears critical in defining
the course of M. leprae infection and, ultimately, the
clinical outcome (Fig. 1). M. leprae bacilli are initially
recognized by several innate immune receptors, including
Toll-like receptors (TLR). M. leprae predominantly acti-
vates the TLR2/1 heterodimer expressed in macrophages
of the skin, which mediates cell activation to initiate killing
of M. leprae. TLR2 and TLR1 are more strongly expressed
in lesions of the localized TT form as compared with the
disseminated LL form of the disease [25–28]. Schwann
cells can also express TLR2 and the activation of TLR2 on
these cells contributes to nerve damage in leprosy [29].

Cytokines such as IL-15 and IL-10 are differentially pro-
duced during the innate immune response and are known
to regulate macrophage function. IL-15 is expressed in TT
lesions and induces antimicrobial activity and the vitamin
D-dependent antimicrobial program in macrophages,
resulting in phagocytosis of mycobacteria that restricts the
ability to establish infection [30]. In LL patients, IL-4 both
downregulates TLR2/1 expression and inhibits the TLR2/
1-induced cytokine response of macrophages. While IL-10
has no direct effect on TLR2/1 expression, it can strongly
inhibit TLR2/1-induced cytokine release [26].
Activation of leukocyte immunoglobulin-like receptor

subfamily A member 2 (LILRA2), expressed in several im-
mune cells including macrophages, may control the ability

Fig. 1 Immune response in the polar clinical forms of leprosy. a In tuberculoid leprosy (TT) patients, the innate immune response is activated by M.
leprae through toll-like receptors (TLR2/1). IL-15 stimulates the vitamin D-dependent antimicrobial program in macrophages and inhibits phagocytosis
of mycobacteria. These events promote a Th1 T-cell cytokine response (IFN-γ, IL-2, TNF, and IL-15) that contains the infection in well-
formed granulomas, and a Th17 response (IL-17A, IL-17F, IL-21 and IL-22) that leads to tissue inflammation and destruction, neutrophil
recruitment, macrophage activation, and enhancement of Th1 effector cells. b In lepromatous leprosy (LL) patients, IL-4, IL-10, leukocyte immunoglobulin-
like receptor subfamily A member 2 (LILRA2), and oxidized phospholipids inhibit TLR2/1-induced cytokine responses but preserve IL-10 release. In addition,
immune complexes trigger IL-10 production and increase phagocytosis of M. leprae, ApoB, haptoglobin-hemoglobin complex and oxidized phospholipids
by macrophages through the receptors CD209 and CD163, without activating the vitamin D-dependent antimicrobial pathway. The foamy appearance of
macrophages is due to the accumulation of lipid droplets (LD) inside these cells. There is an upregulation of perilipin and the adipose
differentiation-related protein in the endoplasmic reticulum–Golgi complex with the formation of vesicles containing lipids, phospholipids,
cholesterol ester, and cholesterol. Further, there is an increase in both the synthesis of LDL receptors (such as CD36, LDL-R, SBA-1, SR-B1,
and LRP-1) and uptake of endogenous cholesterol that accumulates intracellularly. This induces a Th2 and Treg immune profile, with the
production of IL-4 and IL-10, antibody production, absence of granulomas, and failure to restrict M. leprae growth [26, 31, 32, 41–46]
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of the innate immune system to activate the adaptive T
cell response. Although the ligand for LILRA2 has not
been identified, its activation inhibits TLR2/1-induced IL-
12 release but maintains IL-10 release, and while the
mechanism of LILRA2 activation during leprosy remains
uncertain, LILRA2 is notably more highly expressed in LL
than in TT lesions [31]. The LILRA2-expressing cells
identified in LL lesions belong to a monocyte/macrophage
lineage and co-express CD209, which is essential in
mediating the uptake of mycobacteria by macrophages.
Accordingly, expression of CD209 increases the uptake
of M. leprae, resulting in higher bacterial loads. Simi-
larly, oxidized phospholipids inhibit TLR2/1-induced
IL-12 release, but preserve IL-10 release [32]. Immune
complexes, which are abundant in the LL form due to
the large quantity of antibodies that are produced, can
trigger macrophages to produce IL-10 [33, 34].
The phagocytic program induced in macrophages by IL-

10 is most apparent in leprosy patients that progress to the
extreme LL clinical form [33, 34]. IL-10-stimulated macro-
phages enhance phagocytosis of both oxidized low-density
lipoprotein and mycobacteria, but without triggering the
vitamin D-dependent antimicrobial pathway. This diver-
gence between the phagocytic and antimicrobial pathways
likely promotes an intracellular environment that favors
mycobacterial survival. IL-10-programmed macrophages
are characterized by high expression of C-type lectin recep-
tors (CD209 and CD206) and scavenger receptors (CD163,
SR-A, CD36, and MARCO). CD163 mediates the uptake of
hemoglobin-haptoglobin complex, thus providing a source
of iron for mycobacterial survival [35], and triggers further
IL-10 production [36]. All of these C-type lectin and
scavenger receptors are implicated in the uptake of
apoptotic cells, apoprotein B (ApoB), lipids and lipopro-
teins, that are nutrient sources for M. leprae [37], and are
also associated with functions related to the maintenance
of tissue homeostasis by macrophages [37–40]. Lipid up-
take also inhibits the innate immune response against the
bacteria by diminishing TLR-induced antimicrobial activity
and by skewing the cytokine balance toward IL-10 secretion
whilst inhibiting IL-12 production [41]. This IL-10-derived
macrophage pathway is found in the MB forms and
enhances phagocytosis of oxidized phospholipids and add-
itional M. leprae. Studies have shown a colocalization of
the CD209 and CD163 markers, M. leprae, apoprotein B,
and host-derived oxidized phospholipids within the phago-
somes [26, 41]. Biopsies from LL patients exhibit macro-
phages that are packed with lipid droplets (LD), named
“foamy macrophages” [42, 43]. Additional mechanisms
such as enhanced cell survival through decreased apoptosis
may also contribute to the foamy macrophage characteristic
of LL lesions [44]. Schwann cells (SC) from LL patients also
have a foamy phenotype, and LD accumulation seems to be
associated with the pathophysiology of leprosy [45, 46].

As the most efficient antigen-presenting cells, dendritic
cells (DC) play an important role in connecting innate
and adaptive immunity but the actual contribution of DC
subsets to the pathogenesis of leprosy remains controver-
sial. Whereas some studies have reported a larger number
of DC in the lesions of TT patients [47, 48], others have
suggested that plasmocytoid DC are not involved in host
responses against M. leprae [49, 50].

Immunopathogenesis of leprosy reactions
In the complex evolution of leprosy, two types of spon-
taneous acute inflammatory phenomena, are known to
occur. These “leprosy reactions” occur in 30–50% of
patients at some time during the course of their disease
[51, 52]. Reactions can present with intense neural
inflammation, resulting in sudden and even permanent
loss of sensory, autonomic and motor functions. Besides
aggravating the neural lesions, reactions frequently
require prolonged treatment with toxic drugs such as
corticosteroids and/or thalidomide, which is a major
concern for the leprosy patients.
Reactions are classified into two main types: Type I re-

actions, also commonly known as reversal reaction (RR),
and Type II reaction, commonly known as erythema
nodosum leprosum (ENL) [51, 52]. The mediators of
tissue damage in these reactions are partially known,
with increased amounts of Th1 cytokines such as IFN-γ,
IL-12, and IL-2 clearly demonstrated in both RR and
ENL [51, 53] (Fig. 2). It remains unclear, however,
whether the inflammatory profile observed in the lesions
or blood during reactions is the cause or consequence of
these reactions.

Type I reactions (RR)
RR occurs in 30% of patients and involve a sudden activa-
tion of an inflammatory response to M. leprae antigens. RR
are the main cause of nerve damage in leprosy and occur
most frequently after the initiation of treatment, most often
arising in the first two months after the initiation of chemo-
therapy. This reflects a switch from a Th2-predominant
toward a Th1 response [17, 53–57]. Affected patients
present with swollen hands and feet, exacerbation of cuta-
neous lesions and neural involvement, that can result in
hospitalization [55, 58].
Both innate and adaptive immune responses participate

in the pathogenesis of RR. RR lesions are associated with a
type-IV (or delayed-type) hypersensitivity reaction and
immunophenotyping studies have indicated that the
number and percentage of CD4+ T cells are increased in
reacting skin lesions [4, 59, 60]. The vitamin D-dependent
antimicrobial pathway is activated, and IL-1, IL-2, IL-6, IL-
8, IL-12 p40, IFN-γ, TNF, IL-2 receptor [61], and CXC
chemokine-10 (CXCL10 or IP10) are detected in the circu-
lation and cutaneous lesions [60]. The tumor necrosis
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factor superfamily (TNFSF) is essential for the induction of
programmed cell death and costimulation of distinct cell
types [62, 63] and the TNFSF15 locus has been associated
with susceptibility for leprosy in Chinese individuals. A
recent study from Brazil and Vietnam reported that the
TNSF8 locus, but not the TNFSF15 locus, confers suscepti-
bility to RR [62]. Overall, the cytokine expression pattern in
the RR lesions indicates enhancement of the Th1 response
with accompanying, or related, activation of the innate
immune response and inflammatory products.

Type II reactions (ENL)
ENL affects patients with poor cellular immune responses
but who have preserved humoral responses, and thus
presents in MB patients with high levels of anti-M. leprae
immunoglobulins. ENL is characterized by an abrupt
onset of erythematous and painful nodules accompanied
by systemic symptoms such as fever, lymph node infarc-
tion, bone tenderness and hepatosplenomegaly. Neuritis
can persist for years as a chronic and recurrent symptom
in most patients [64].
ENL is usually initiated by deposition of immune com-

plexes and activation of the complement cascade, resulting
in vasculitis or a type-III hypersensitivity reaction [7]. High
immunoglobulin levels and low levels of complement

components (a sign of complement activation) can be de-
tected along with the presence of platelet-derived growth
factor BB (PDFG-BB) [60, 65]. PDFG-BB is known to pro-
mote angiogenesis and is a potential marker of ENL [65].
ENL lesions present with deposits of immunoglobulins,

complement and some mycobacterial constituents [66],
along with expression of IL-6, IL-8, and IL-10 mRNA and
sustained expression of IL-4 and IL-5 mRNA, consistent
with neutrophil chemotaxis and antibody production [67].
Tissue infiltration by CD4 cells and neutrophils occurs
[64]. The same cytokines as mentioned earlier for RR are
also found at high levels in the plasma during ENL, but in
ENL there are significantly higher levels of IL-4, IL-5, IL-
10, IL-6, IL-7 and TNF [60, 61, 68–72]. The most severe
reactions are associated with increased production of TNF
and IFN-γ and IFN-γ injections have been shown to acti-
vate ENL lesions [52, 73, 74]. While FoxP3 expressing
Treg producing TGF-β are increased in stable leproma-
tous leprosy patients, patients with reactions exhibit an
imbalance in Th17 and Treg populations [22]. These data
suggest that Treg may exert control on the inflammatory
response during leprosy reactions.
Moreover, Vieira et al. determined either the frequency

of circulating Tregs in patients with RR and ENL or the
frequency of Tregs and interleukin IL-17, IL-6, and

Fig. 2 Immunological aspects of leprosy reactions. a RR represents a type IV hypersensitivity reaction. Sudden activation of an inflammatory response
to M. leprae antigens, often after the initiation of treatment, triggers a transient conversion from a Th2 toward a Th1 response. The cytokine expression
pattern in lesions indicates enhancement of the Th1 response along with activation of the innate response and inflammatory products. b ENL involves
high levels of TNF, immune complex-associated vasculitis, and intralesional infiltration of neutrophils, eosinophils, and CD4+ T cells. ENL is initiated by
the deposition of immune complexes and activation of complement, triggering elevation of several pro-inflammatory cytokines, neutrophilic infiltrates,
and vasculitis [61–64, 82, 83]
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(TGF)-β-expressing cells not only peripheral blood but in
biopsies taken before and during the reaction episodes.
Their results suggest that in ENL, downmodulation of
Tregs may influence the development of Th-17 responses
that characterize this reaction [75].
Early diagnosis of leprosy reactions is crucial for efforts

to reduce tissue damage and prevent disabilities. Khadge
and colleagues (2015) showed that in newly diagnosed
patients from Bangladesh, Brazil, Ethiopia and Nepal the
production IFN-γ, IP-10, IL-17 and VEGF in supernatants
from M. leprae antigen-stimulated cells increased during
type 1 reaction, as compared to patients without leprosy
reactions [76]. There is, however, a lack of biomarkers that
are capable of reliably predicting reactions within endemic
populations [76].

Neuropathy
Nerve injury is the hallmark of progressive M. leprae
infection and is present in all forms of leprosy [77–79].
Physical impairment in leprosy is defined as any reduction
in sensory or motor functions. Since neurological involve-
ment is inherent to all forms of leprosy, disability is a fre-
quent complication, resulting from the natural course of
disease [58]. The major determinant of neuronal injury is
the ability of M. leprae to bind and infect SC. M. leprae
phenolic glycolipid (PGL)-I interacts with the laminin-2
receptor located on the SC membrane [53, 80–82] and
laminin-binding protein 21 (LBP21) mediates the intracel-
lular entry of M. leprae into the SC [82, 83].
In TT patients, neural damage has a direct positive

correlation with IFN-γ [67]. The activated Th1 response
and development of strong cellular immunity contribute
to the formation of tuberculoid granulomas and caseous
necrosis, and may culminate in the appearance of ab-
scesses and complete destruction of the nerves [4]. In
contrast, in LL patients exhibiting Th2 responses, the
neuropathy is directly related to the M. leprae infection
of peripheral nerves.

Conclusions
Our current knowledge postulates that the initial inter-
action between the M. leprae and the host innate immune
response impacts the initial growth and establishment of
infection, then potentially influencing the type of adaptive
immune response that is induced against the infection.
Although considerable progress has been made in under-
standing leprosy and the factors involved in its clinical out-
comes, an improved understanding of the early events of
M. leprae infection are needed. This will hopefully help us
better understand the diverse pathogenic events that can
occur later in infection, to predict clinical outcomes and
risk for complications, make improvements in drug design
and individualized therapies possible, and to reveal the
potential for novel immunotherapies. Given its spectral

presentation leprosy is an instructive human disease that
allows for direct and controlled comparison of immune
responses, in particular, CD4 T cell differentiation and dis-
coveries in leprosy can therefore provide critical insight that
can be applied to other immune- and pathogen-mediated
diseases.
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