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Abstract

Background: In order to achieve the goal of malaria elimination, the Chinese government launched the National
Malaria Elimination Programme in 2010. However, as a result of increasing cross-border population movements, the
risk of imported malaria cases still exists at the border areas of China, resulting in a potential threat of local
transmission. The focus of this paper is to assess the Plasmodium vivax incidences in Tengchong, Yunnan Province, at
the border areas of China and Myanmar.

Methods: Time series of P. vivax incidences in Tengchong from 2006 to 2010 are collected from the web-based
China Information System for Disease Control and Prevention, which are further separated into time series of
imported and local cases. First, the seasonal and trend decomposition are performed on time series of imported cases
using Loess method. Then, the impact of climatic factors on the local transmission of P. vivax is assessed using both
linear regression models (LRM) and generalized additive models (GAM). Specifically, the notion of vectorial capacity
(VCAP) is used to estimate the transmission potential of P. vivax at different locations, which is calculated based on
temperature and rainfall collected from China Meteorological Administration.

Results: Comparing with Ruili County, the seasonal pattern of imported cases in Tengchong is different: Tengchong
has only one peak, while Ruili has two peaks during each year. This may be due to the different cross-border behaviors
of peoples in two locations. The vectorial capacity together with the imported cases and the average humidity, can
well explain the local incidences of P. vivax through both LRM and GAMmethods. Moreover, the maximum daily
temperature is verified to be more suitable to calculate VCAP than the minimal and average temperature in
Tengchong County.

Conclusion: To achieve malaria elimination in China, the assessment results in this paper will provide further
guidance in active surveillance and control of malaria at the border areas of China and Myanmar.

Multilingual abstracts
Please see Additional file 1 for translation of the abstract
into the five official working languages of the United
Nations.

Background
Malaria is one of the important vector-borne infectious
diseases that seriously endanger the public health and
affect the socio-economic development [1, 2]. For exam-
ple, malaria caused approximately 216 million infections
and about 438 000 deaths worldwide in 2015 [3]. Many
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initiatives and programmes have been launched to help
develop implementable action plans for malaria control
and elimination, such as the Global Malaria Initiatives,
the U.S. President’s Malaria Initiative and the Lubombo
Spatial Development Initiative [4]. Previous experiences
emphasize that border areas should be a focus for malaria
control activities given the high intensity of both formal
and informal movement of people and goods across bor-
ders [5]. For exmaple, in the Greater Mekong Subregion,
malaria transmission is largely confined to the border
areas between Burma, Cambodia, and Thailand [6]. On
the one hand, the cross-border movement of populations
can introduce malaria cases from high-transmission areas
into previously low-transmission or malaria-free areas
[7–10]. On the other hand, the imported cases may cause

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s40249-017-0322-2&domain=pdf
mailto: benyunshi@outlook.com
mailto: guojingyang@hotmail.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Shi et al. Infectious Diseases of Poverty  (2017) 6:108 Page 2 of 9

the recurrence of malaria when the environment is suit-
able for local transmission. Therefore, to achieve global
malaria eradication, one of the most important research
agenda is to strengthen regional intercountry collabora-
tions, especially the cross-border collaborations [11].
Historically, malaria was extensively endemic in China,

especially in the 1960s and 1970s [12]. Since the Chinese
government launched the National Malaria Elimination
Programme (NMEP) in 2010, great progress have been
made to achieve the elimination of malaria. During the
implementation of the NMEP from 2010 to 2014, local
malaria incidence has declined continuously, except for
the border areas of Yunnan Province, China [13]. Yunnan
Province shares a 4 061-kilometer borderline with Myan-
mar, Laos, and Vietnam. Because the border areas are
mostly mountainous, crossing the border becomes very
easy. It has been estimated that there are several millions
of people belonging to the mobile and migrant popula-
tion (MMP), who may cross the border every year [14].
In 2011, the number of malaria cases in Yunnan Province
was the highest in China and accounted for 34% of the
total cases in the country [15]. However, according to the
malaria report in 2013, about 91.2% malaria cases in Yun-
nan Province are imported from neighboring countries,
amongwhich 79.6%were caused by the Plasmodium vivax
parasite [16]. Because the imported cases can result in
local transmission of malaria in a suitable environment,
it becomes one of the biggest obstacles for nationwide
elimination of the disease in China [17, 18].
In this paper, we focus on assessing the transmission

risk of P. vivax in Tengchong County, Yunnan Province,
China, which is at the border area of China and Myan-
mar. Existing studies have shown that the impedance of
malaria control in Tengchong are more likely due to the
increase of formal and informal human movement across
China-Myanmar border regions [19, 20]. Different cross-
border activities may result in different temporal patterns
of imported cases (e.g., the number of peak transmis-
sion seasons). For example, people engaged in frontier
trade may frequently cross the border; while local farm-
ers may go to Myanmar for logging or mining during the
slack seasons in farming. In this case, to take a step for-
ward to malaria elimination and prevent the recurrence
of malaria in China, it would be better to analyze the
temporal patterns of imported cases so as to further inves-
tigate the purpose of human cross-border activities. By
doing so, active surveillance and target interventions can
be planned and implemented.
From the perspective of disease epidemiology, the nat-

ural transmission of P. vivax depends on the interactions
between female anopheles mosquitoes and human beings.
Existing studies have shown that the ability of mosquitoes
to transmit P. vivax can be affected by a series of biolog-
ical factors, such as the daily survival rate of mosquitoes

and the sporogonic cycle of sporozoits in their bodies
[21]. Researchers have revealed that meteorological fac-
tors can also significantly affect mosquito population as
well as their biological cycles [22, 23]. Specifically, a vec-
torial capacity model has been proposed to estimate the
malaria transmission potential, which takes into consid-
eration the impact of temperature and rainfall on the
bionomics of mosquitoes and the extrinsic incubation
period of parasites [24]. Taking into consideration both
human cross-border movements and local environmental
factors, the objective of this work is twofold: (i) to inves-
tigate the temporal patterns of imported cases so as to
guide the implementation of active surveillance; and (ii) to
evaluate the impact of meteorological factors on the local
transmission risk of P. vivax in Tengchong County.
The analysis procedures of this paper is organized as

follows. First, we demonstrate the different temporal pat-
terns of imported P. vivax cases in Tengchong and Ruili
counties by performing seasonal and trend decomposi-
tion using Loess method. Then, we assess the relationship
between local P. vivax cases and meteorological factors
using both linear regression models (LRM) and general-
ized additive models (GAM). Moreover, to characterize
the nonlinear relationship between P. vivax transmission
potential and meteorological factors, the notion of vecto-
rial capacity (VCAP) is adopted, which is defined as “the
number of potentially infective contacts an individual per-
son makes, through vector population, per unit time [25].”
Both the LRM and GAM results show that the VCAP
together with the imported cases can better explained the
local infections of P. vivax. Specifically, we verify that the
maximum daily temperature is more suitable to calcu-
late VCAP than the minimal and average temperature in
Tengchong County.

Methods
Data collection
In China, there is a sound surveillance system for infec-
tious diseases, namely the China Information System for
Disease Control and Prevention (CISDCP), where malaria
cases are reported daily from each public health facility
[26]. According to the Action Plan of China Malaria Elim-
ination, it is obligatory for any medical institutions and
hospitals to report clinically confirmed infection cases
into the system. In this case, even though the underreport-
ing of P. vivax infections is still unavoidable, the number of
missing report should be negligible. Time series of P. vivax
cases in Tengchong and Ruili are collected and aggre-
gated from CISDCP on a daily basis ranging from 2006 to
2010, where imported cases (IP.v) are discriminated from
local infections (LP.v) by doctors or public health inves-
tigators through face-to-face case studies. Accordingly,
meteorological data are collected from China Meteoro-
logical Administration on a daily basis, which include
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the minimum temperature (Tmin), average temperature
(Tavg), maximum temperature (Tmax), rainfall (R), average
humidity (Havg), and minimum humidity (Hmin).

Vectorial capacity
The notion of vectorial capacity (VCAP) has been exten-
sively used to assess malaria transmission potential based
on meteorological factors [25, 27, 28]. The VCAP is
derived from the basic reproductive number calculated
based on the Macdonald model [29]. Mathematically, it is
formulated as follows:

V = − (
ma2

)
pn

ln(p)
, (1)

wherem represents the equilibrium mosquito density per
person, a is the expected number of bites on human
beings per mosquito per day, p is the probability of a
mosquito surviving through one whole day, and n is
the entomological incubation period of malaria parasites.
Based on the study of Ceccato et al. in [24], all these
parameters are dynamically dependent on the tempera-
ture T and rainfall R. Specifically, we have m = 100 ∗ R,
a = 0.7/g, g =[ 36.5/(T + 2.0 − 9.9)]+0.5, p = 0.51/g ,
and n = 105/2∗[ 36.5/(T + 2.0 − 9.9)] /g + T − 18. For
more details about the model parameters, please refer to
the Table 2 in [27]. With respect to different tempera-
ture (resp., Tmin, Tavg , and Tmax), we have different values
of VCAP (resp., Vmin, Vavg , and Vmax), where the sub-
scripts correspond to temperature Tmin, Tavg , and Tmax.
In this paper, we exam the suitability of Tmin, Tavg , and
Tmax to estimate the transmission potential of P. vivax in
Tengchong County.

Analysis methods
To reveal the temporal patterns of imported cases, the
seasonal and trend decomposition are performed on the
daily time series using Loess method. To a certain extent,
the seasonality reveals the pattern of human cross-border
movements, which can guide the active surveillance and
control of imported cases from neighboring countries.
While the trend reflects the strength of disease interven-
tion implemented by public health authorities, which are
further adopted in our methods to model the risk of local
malaria transmission.
To explore the relationship between local transmission

risk of P. vivax and associated environmental factors,
time series of local P. vivax incidences in Tengchong
are fitted by meteorological factors using both linear
regression models (LRM) and generalized additive mod-
els (GAM). Since the number of daily P. vivax incidences
are very small, in this study, both imported and local cases
are aggregated biweekly. Accordingly, the time series of

environmental factors are also averaged over 14 days. This
is reasonable because although the P. vivax parasites may
stay dormant for a long time, the incubation period of P.
vivax is usually from 12 to 20 days. The Pearson coeffi-
cient is first calculated to measure the linear correlation
between each pair of these meteorological factors. Then,
several LRM and GAMmodels are assessed to predict the
expected number of local incidences (LP.v) from the mete-
orological factors and the number of imported cases (IP.v).
Mathematically, the following models are proposed:

LRM-1:LP.v = β0 + β1Tmin + β2Tavg + β3Tmax

+ β4R + β5Havg + β6Hmin + β7IP.v,
LRM-2:LP.v = β0 + β1Tavg + β2R + β3Havg + β4IP.v,
GAM-1:log(LP.v) = β0 + f1 (Tmin) + f2(Tavg)

+ f3(Tmax) + f4(R) + f5(Havg)

+ f6(Hmin) + f7(IP.v),
GAM-2:log(LP.v) = β0 + f1(Tavg) + f2(R) + f3(Havg)

+ f4(IP.v),

The reason to propose LRM-2 and GAM-2 is that there
exists significant correlation among Tmin, Tavg , and Tmax,
and between Hmin and Havg .
In addition, another three assessment models are built

upon the notion of vectorial capacity V, which integrates
both temperature and rainfall. Taking into consideration
the strength of malaria control implemented by public
health authorities, a linear trend of time series of P. vivax
incidences is combined with VCAP to reflect the risk of P.
vivax infection. To assess the suitability of Vmin, Vavg , and
Vmax for estimating the P. vivax transmission potential,
the following GAMmodels are proposed:

GAM-V-MIN:log(LP.v) = β0 + f1((a + bt)Vmin)

+ f2(Havg) + f3(IP.v),
GAM-V-AVG:log(LP.v) = β0 + f1((a + bt)Vavg)

+ f2(Havg) + f3(IP.v),
GAM-V-MAX:log(LP.v) = β0 + f1((a + bt)Vmax)

+ f2(Havg) + f3(IP.v).

where (a + bt) is the trend obtained from the seasonal
and trend decomposition of P. vivax incidences. All these
models will be assessed based on the available dataset in
Tengchong County.

Results
Time series decomposition of P. vivax cases
The seasonal and trend decomposition are performed on
time series of imported P. vivax cases using Loess method.
To a certain extent, the seasonality reveals the pattern of
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human cross-border movements, while the trend reflects
the strength of malaria intervention and control. A com-
parison is conducted between Tengchong and Ruili, where
Ruili is anothermalaria-endemic county at the border area
of China and Myanmar. Figure 1 shows the decomposi-
tion results in Tengchong County, and Fig. 2 shows the
decomposition results in Ruili County. It can be observed
that the trend of imported P. vivax cases in both coun-
ties declines almost linearly, reflecting the effectiveness
of the implemented malaria intervention policy. However,
the patterns of seasonality is totally different in the two
counties: Tengchong has only one peak every year, while
Ruili has two peaks. This may be due to different human
cross-border activities in these two counties. Comparing
to Ruili, Tengchong is a little far away from the customs
on the China-Myanmar border. Detailed investigations
in Tengchong show that most farmers in the same vil-
lages often go to Myanmar in groups during the slack
season, and come back before the busy seasons. Such
activities happens once a year. However, due to the lack of
manpower and resources, such investigations in Ruili are
not put into effect. Even so, the observations provide an
insight into the implementation of active surveillance on
imported cases to further investigate the motivations of
their cross-border activities other counties at the border
area. The reason is that different cross-border activi-
ties may result in different seasonal patterns of imported
cases, which further trigger different risks of infection at
different time of a year. Therefore, targeted intervention
strategies are required for counties with different patterns
of imported cases.

The relationship between local infections and
meteorological factors
To reveal the relationship between local infections and
meteorological factors, the Pearson correlation coeffi-
cients between each pair of meteorological factors are first
calculated, where daily time series of Tmin, Tavg , Tmax,
R, Havg and Hmin with lag zero are used. Table 1 shows
the correlation matrix between meteorological factors in
Tengchong County. Strong linear correlation can be found
among Tmin, Tavg , and Tmax, as well as between Havg
and Hmin. In this case, only two types of LRM models
(i.e., LRM-1 and LRM-2) and two types of GAM mod-
els (GAM-1 and GAM-2) are compared to assess time
series of local P.vivax infections. Given a set of candi-
date models for the data, the preferred model is the one
with the minimum Akaike information criterion (AIC)
and Bayesian information criterion (BIC) values. Table 2
shows the comparisons of LRM and GAM models with
respect to local infections of P.vivax in Tengchong County.
First, it can be observed that the nonlinear GAM models
have better performances than corresponding LRMmod-
els. For example, GAM-1 (resp., GAM-2) model is better
than LRM-1 (resp., LRM-2) model with smaller values of
AIC, BIC and mean squared error (MSE), and larger R2

and percentage of deviance explain. Second, even though
some meteorological factors have strong correlations, the
LRM-1 (resp., GAM-1) model, which involves more mete-
orological factors, has smaller AIC value but larger BIC
value than the LRM-2 (resp., GAM-2) model. when fit-
ting models, more parameters may result in overfitting.
Both AIC and BIC rewards goodness of fit, but they also

Fig. 1 The seasonal and trend decomposition of imported vivax malaria cases in Tengchong Countiy. The seasonality reveals the pattern of human
cross-border movements, while the trend reflects the strength of malaria intervention and control. It can be observed that there is only one peak of
imported cases each year
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Fig. 2 The seasonal and trend decomposition of imported vivax malaria cases in Ruili County. The seasonality reveals the pattern of human
cross-border movements, while the trend reflects the strength of malaria intervention and control. It can be observed that there are two peaks of
imported cases each year

attempt to resolve the overfitting problem by introducing
a penalty that is an increasing function of the number of
estimated parameters (NUM). However, the penalty term
in BIC is larger than in AIC. Therefore, we cannot deter-
mine which model between LRM-1 and LRM-2 (resp.,
between GAM-1 and GAM-2) is better.

The GAMmodels with vectorial capacity
Based on Eq. 1, the estimation of vectorial capacity V
involves both temperature T and rainfall R in Tengchong.
Accordingly, three VCAP values Vmin, Vavg , and Vmax
can be calculated using different temperatures Tmin, Tavg ,
and Tmax (see Fig. 3). It can be observed that the VCAP
curves have similar temporal patterns to the time series
of P. vivax incidences in Tengchong. Since GAM mod-
els is superior to LRM models (see Table 2), to evaluate
the effects of VCAP on local P. vivax infections, only
GAMmodels are used to conduct the comparison (i.e., the

Table 1 The Pearson coefficient matrix between time series of
meteorological factors in Tengchong County

Tavg Tmin Tmax R Havg Hmin

Tavg 1

Tmin 0.98 1

Tmax 0.94 0.86 1

R 0.662 0.73 0.47 1

Havg 0.63 0.75 0.36 0.72 1

Hmin 0.72 0.83 0.45 0.80 0.96 1

GAM-V-MIN, GAM-V-AVG, and GAM-V-MAX mod-
els), where a linear trend (a+ bt) is combined with VCAP
to approximate the declining trend observed from time
series decomposition in Tengchong County. Table 3 shows
the performance of the three models with respect to local
infections of P. vivax in Tengchong. Comparing with the
LRM and GAM models in Table 2, all the three models
havemuch better performance, representing that VCAP is
more suitable to explain the risk of local infection. More-
over, the parametric coefficients show that all variables
Vmin, Vavg , Vmax, Havg , and IP.v strongly support these
models with significance level p < 0.01.

Model selection for estimating vectorial capacity
The results in Table 3 can also determine which temper-
ature among Tmin, Tavg , and Tmax is better for estimating
the transmission potential of P. vivax in Tengchong. This
is critical for the prediction of malaria outbreaks. It can be

Table 2 The comparison of LRM and GAMmodels with respect
to local P. vivax infections

Model linear df NUM AIC BIC MSE R/squ Deviance
explain %

LRM-1 Y 9.00 8 208.22 231.30 0.43 0.34 33.80

GAM-1 N 18.31 8 197.84 244.80 0.31 0.45 45.30

LRM-2 Y 6.00 5 211.53 226.92 0.47 0.29 29.40

GAM-2 N 10.02 5 206.57 232.26 0.41 0.36 35.50

df residual degrees-of-freedom, NUM the number of parameters in the model, AIC
Akaike information criterion, BIC Bayesian information criterion,MSE Mean squared
error, R/squ the coefficient of determination R2
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Fig. 3 The vectorial capacity calculated using various temperatures Tmin , Tavg , and Tmax in Tengchong County. The notion of vectorial capacity is
defined as the number of potentially infective contacts an individual person makes, through vector population, per unit time

observed that the GAM-V-MAX model performs slightly
better than the other two models. To further evaluate
the model, we conduct the deviance analysis. The null
hypothesis is that the three models fit the data equally
well, and the alternative hypothesis is that the GAM-V-
MAXmodel is superior. Here the F-statistic is 4.34 and the
associated P-value is 0.03. The result provides very clear
evidence that the GAM-V-MAX model involving maxi-
mum temperature is superior to the GAM-V-MIN and
GAM-V-AVGmodels. Figure 4 shows the estimated curve
of P. vivax infections based on the GAM-V-MAX model.
It can be observed that most periods with high risk of
infection can be estimated by the GAM-V-MAX model.
Figure 5 shows the estimated nonparametric smooths

of VCAP, average humidity, and imported cases from
the GAM-V-MAX model. Regions where the confidence
bands (i.e., the dot lines) enclose the horizontal red line
indicates corresponding values where the overall pattern
is not significant. The smooth of imported cases indicate
that the true relationship between the number of local
infections and that of imported cases is linear. However,
the estimated degrees of freedom (edf) for VCAP and
average humidity is larger than 1, which indicate possible

Table 3 The performance of VCAP-associated GAMmodels with
respect to local P. vivax infections

Model linear df Num AIC BIC MSE R/squ Deviance
explain %

GAM-V-AVG N 7.84 4 143.83 161.70 0.34 0.455 50.0

GAM-V-MIN N 7.20 4 146.03 162.44 0.36 0.433 47.5

GAM-V-MAX N 8.18 4 141.87 160.51 0.33 0.472 51.8

df residual degrees-of-freedom, NUM the number of parameters in the model, AIC
Akaike information criterion, BIC Bayesian information criterion,MSE Mean squared
error, R/squ the coefficient of determination R2

deviations from linearity. It can be observed from the
Fig. 5 that the relationship with VCAP may be nearly lin-
ear: it appears that for lower VCAP the number of local
infections increases at a constant rate but after passing
a threshold value of VCAP the rate begins to decrease.
On the other hand, the relationship with average humid-
ity is not significant in most regions, except for the region
between 60 and 70. In this region, the relationship with
average humidity seems to be quadratic.

Discussion
Human population movement (HPM) have been cited
amongst the significant causes of the failure of the Global
Malaria Eradication Programme fifty years ago [30, 31].
Human population movement from high to low or non
malaria-endemic areas can result in imported infections,
which may further trigger onward transmission [7–10].
Moreover, HPM patterns and the risk of malaria trans-
mission vary substantially across spatial and temporal
scales, socioeconomic sub-groups, and motivation for
travel. Therefore, strategic control and elimination plan-
ning requires quantitative information on HPM patterns
and the translation of these into parasite dispersion [32].
Extensive studies have been conducted attempting to
quantify HPM patterns. For example, Wesolowski et al.
quantified the impact of human mobility on malaria in
Kenya using mobile phone data [10]; Menach et al. inves-
tigated the travel risk and malaria importation between
Zanzibar andmainland Tanzania using mobile phone data
and ferry traffic [33]; Tatem et al. proposed a method
for targeting of interventions using surveillance data,
satellite imagery and mobile phone call records to sup-
port elimination planning in Namibia [34]; Pindolia et al.
have investigated the demographics of human movement
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Fig. 4 The fitting result of GAM-V-MAX model with respect to the real number of P. vivax infections

and migration patterns in East Africa based on national
population censuses and household surveys [35]. In high
incidence areas of malaria, such census-style approaches
have been verified to be helpful for malaria interven-
tion and control. For China, which is about to reach the

stage of malaria elimination and has only small num-
ber of imported cases, the above-mentioned approaches
seem to be too resource-consuming and rough to char-
acterize specific imported cases. In this paper, the sea-
sonality analysis on time series of P. vivax incidences

Fig. 5 The estimated nonparametric smooths of VCAP, average humidity, and imported cases from the GAM-V-MAX model. The smooth of
imported cases indicates that the true relationship between the number of local infections and that of imported cases is linear. The smooth of VCAP
indicates that for lower VCAP the number of local infections increases at a constant rate but after passing a threshold value of VCAP the rate begins
to decrease. While the relationship with average humidity is not significant in most regions
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show that different patterns of human cross-border activ-
ity may result in different temporal patterns of P. vivax
infections. Therefore, it would be helpful to perform
active surveillance on motivations of human cross-border
activity so as to plan targeted intervention strategies on
imported cases.
Recently, together with the significant change of social

and economic status, the corresponding malaria control
strategies in Yunnan Province have also been changed.
Besides traditional passive surveillance and vector con-
trols, active surveillance and intervention have also been
introduced, particularly in regions with high risk of
infection. As compared with passive surveillance, active
surveillance is much more ambitious with the aim of dis-
covering every infection or imported case. Local CDC and
surveillance agencies visit villages house by house to iden-
tify high risk populations. In this case, active surveillance
is extremely time-consuming and requires massive expe-
rienced public health workers. However, human resources
are very limited particularly in remote border area. For
example, Tengchong has 18 towns, 205 villages and about
167 964 households distributed in a wide area of 5 845
square kilometers. However, in Tengchong CDC, less than
10 workers/investigators are available to perform active
surveillance. The seasonality analysis for different coun-
ties can help frontier workers to perform active surveil-
lance at the right place and time. For example, at Teng-
chong County, appropriate education and early warning
can be conducted before peoples go to Myanmar once a
year, while household survey can be implemented after
they come back.
It is a particular challenge for malaria elimination at the

China-Myanmar border area, especially when remote bor-
der areas of Myanmar have weak infrastructure and poor
quality of treatments. In China, there is a sound surveil-
lance system (CISDCP) for infectious diseases, where
malaria incidences are reported from public health agen-
cies everyday. However, in Myanmar, the surveillance and
reporting system is too weak to collect sufficient informa-
tion about the truemalaria situation [36]. The weakness of
health systems in Myanmar includes the limited capacity
of local microscopists, incomplete coverage of surveil-
lance for all communities and the lack of data reporting
and management systems [19]. Because the meteorologi-
cal factors are similar at the China-Myanmar border area,
it is possible to use the same meteorological factors to
assess the potential risk of malaria infection on both sides.
In this paper, we have evaluated that the vectorial capacity
(Vmax) calculated by maximum temperature (Tmax) and
rainfall (R) is more suitable to fit the local P. vivax inci-
dences in Tengchong County. Without further improve-
ment of health systems in Myanmar, the GAM-V-MAX
model could temporarily be used to estimate the risk of
infection at the border area. On the other hand, detailed

case studies on imported cases in China can also provide
valuable malaria situations in Myanmar from which they
came back.

Conclusion
In this paper, we have assessed the risk of P. vivax trans-
mission in Tengchong County, Yunnan Province, which
is at the border area of China and Myanmar. First, dif-
ferent patterns of imported cases are decomposed for
Tengchong and Ruili counties based on the seasonal and
trend decomposition using Loess method. The seasonal
patterns can provide useful information for active surveil-
lance and further investigation of human cross-border
movement, which is one of the biggest challenges for
nationwide elimination of malaria in China. Second, the
effect of meteorological factors on local risk of P. vivax
infections is investigated using various linear regression
models and generalized additive models. By comparison,
it has been verified that the notion of vectorial capacity
(VCAP) together with the number of imported cases is
significant indicator to fit the number of local P. vivax
incidences in Tengchong. Moreover, the maximum tem-
perature has been assessed to bemore suitable for estimat-
ing VCAP than the minimum and average temperature.
Finally, the strong linear relationship with VCAP and
imported cases indicates that to achieve effective malaria
intervention, it is critical to perform active surveillance on
the number of imported cases before the high risk season
comes.
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