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Abstract

Background: Dengue fever (DF) is a common mosquito-borne viral infectious disease in the world, and increasingly
severe DF epidemics in China have seriously affected people’s health in recent years. Thus, investigating spatiotemporal
patterns and potential influencing factors of DF epidemics in typical regions is critical to consolidate effective
prevention and control measures for these regional epidemics.

Methods: A generalized additive model (GAM) was used to identify potential contributing factors that influence
spatiotemporal epidemic patterns in typical DF epidemic regions of China (e.g., the Pearl River Delta [PRD] and the Border
of Yunnan and Myanmar [BYM]). In terms of influencing factors, environmental factors including the normalized difference
vegetation index (NDVI), temperature, precipitation, and humidity, in conjunction with socioeconomic factors, such as
population density (Pop), road density, land-use, and gross domestic product, were employed.

Results: DF epidemics in the PRD and BYM exhibit prominent spatial variations at 4 km and 3 km grid scales, characterized
by significant spatial clustering over the Guangzhou-Foshan, Dehong, and Xishuangbanna areas. The GAM that integrated
the Pop-urban land ratio (ULR)-NDVI-humidity-temperature factors for the PRD and the ULR-Road density-NDVI-temperature-
water land ratio-precipitation factors for the BYM performed well in terms of overall accuracy, with Akaike Information
Criterion values of 61 859.89 and 826.65, explaining a total variance of 83.4 and 97.3%, respectively. As indicated,
socioeconomic factors have a stronger influence on DF epidemics than environmental factors in the study area. Among
these factors, Pop (PRD) and ULR (BYM) were the socioeconomic factors explaining the largest variance in regional
epidemics, whereas NDVI was the environmental factor explaining the largest variance in both regions. In addition, the
common factors (ULR, NDVI, and temperature) in these two regions exhibited different effects on regional epidemics.

Conclusions: The spatiotemporal patterns of DF in the PRD and BYM are influenced by environmental and socioeconomic
factors, the socioeconomic factors may play a significant role in DF epidemics in cases where environmental factors are
suitable and differ only slightly throughout an area. Thus, prevention and control resources should be fully allocated by
referring to the spatial patterns of primary influencing factors to better consolidate the prevention and control measures for
DF epidemics.
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Multilingual abstracts

Please see Additional file 1 for translations of the ab-
stract into the five official working languages of the
United Nations.

Background

Dengue fever (DF) is an acute infectious disease caused
by the dengue virus, which is transmitted by Aedes
albopictus and Aedes aegypti [1]. Approximately
one-third of the global population is exposed to DF,
which is widely endemic in tropical and subtropical
areas, especially in Southeast Asia, the Western Pacific,
and southern Africa [2]. In recent years, the increasing
incidence and range of DF epidemics have had a serious
impact on people’s health and lives, and DF has become
a public health problem that should not be
underestimated.

In the mainland of China, DF is currently a localized
epidemic caused by imported cases. No case was re-
ported in China from 1949 to 1977 until an outbreak oc-
curred in Guangdong Province in 1978, since then,
China’s DF epidemic has been intermittent [1]. With the
acceleration of globalization and China’s increasingly fre-
quent international exchanges, the prevalence of DF in-
duced by imported cases has increased substantially [3—
6]. In recent years, DF epidemics have frequently oc-
curred not only in southern China [7-9] but also in
some inland areas, such as Henan (Xuchang) and Shan-
dong (Jining) [10]. Overall, China’s DF epidemic has
shown increasingly shorter time intervals and a wider
spread. In southern China, some typical regions with fre-
quent DF epidemics have developed [11-14], especially
in the Pearl River Delta (PRD) and the Border of Yunnan
and Myanmar (BYM), and the local DF cases in the PRD
and BYM accounted for 97.06% of cases nationwide
from 2010 to 2014.

In the absence of effective vaccines, domestic and for-
eign scholars have conducted a large number of studies
on factors, that affect the spread and prevalence of DF
epidemics, such as the dengue virus, mosquito vectors,
susceptible population, and environmental and socioeco-
nomic factors [15-18]. Among these factors, environ-
mental conditions, such as climate, hydrology, and
vegetation, mainly affect the activity of the dengue virus,
the breeding environment, and mosquito vector activity
[19-21]. Socioeconomic factors, such as population
density, land use, transportation convenience, residents’
income level, and living habits, play an important role in
DF epidemics by changing both the probability of bites
from the mosquito vectors and their activities [22-25].
Previous studies on the epidemic scale, spatiotemporal
characteristics, and influencing factors of DF have deep-
ened our understanding of DF characteristics in China
[1, 19]. However, additional knowledge is needed
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regarding the spatial-temporal characteristics of the epi-
demic in China’s typical DF epidemic areas and the dif-
ferences in influencing factors. Our study was performed
to 1) analyse the spatial-temporal pattern of DF epi-
demics in two regions and 2) use a generalized additive
model (GAM) to analyse and compare the main influen-
cing factors affecting the spatial disparities of DF in the
two regions. The results of this study will provide im-
portant support for strengthening the prevention and
control of DF outbreaks in the PRD and BYM and rais-
ing the level of prevention of DF risk.

Methods

Study area

The PRD (111°28'-114°42'E, 22°16°'-23°57'N) in the
Guangdong Province is located at the Pearl River es-
tuary and includes nine cities, such as Guangzhou
and Foshan (Fig. 1). This area represents one of the
major hubs for China’s economic growth and is one
of the most urbanized regions in the world. In
addition, the PRD has a high population of 58.74 mil-
lion, and the gross domestic product (GDP) per
capita was approximately RMB 107000 yuan in 2015.
The PRD also has a subtropical monsoon ocean
climate that is humid and warm and has abundant
sunshine hours throughout the year [26].

The BYM (97°56°'-101°34'E, 21°28°'-24°43'N) referred
to in our study mainly consists of Xishuangbanna,
Dehong, and parts of Lincang and Puer in Yunnan
Province. It is located on the boundary of Myanmar and
Laos and presents several important international trade
ports. In addition, this region has a population of ap-
proximately 4.4 million and a 2015 GDP per capita of
approximately RMB 25000. Limited differences in
temperature are observed throughout the year, although
a large temperature difference occurs between day and
night. The wet and dry seasons are distinct, and the
water system in the area is developed.

Data collection

DF incidence data

Records of observed DF cases from 2010 to 2014
were obtained from the China Notifiable Disease Sur-
veillance System, and the data included age, gender,
occupation, date of onset, and type of diagnosis. In
this study, only local cases were used to analyse the
spatial-temporal characteristics of the local epidemic
and the relationship between the pattern of the epi-
demic and local variables (environmental and socio-
economic). The DF cases were spatially located with
geocoding (http://www.gpsspg.com/xGeocoding/) to
enable calculation of the number of DF cases on dif-
ferent spatial grid scales.


http://www.gpsspg.com/xGeocoding/
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Environmental and socioeconomic data

In accordance with previous studies [21, 27-29], this
study selected four environmental factors (mean
temperature [Temp], mean relative humidity [Hum],
mean precipitation [Pre], and normalized difference
vegetation index [NDVI]) that temporally correspond
to the epidemic data (from April to November). In
addition, four socioeconomic variables in 2010 (land
use data, population size, road density, and GDP)
were obtained to reflect the regional social conditions.
All variables (see Table 1 for details on data process-
ing) were calculated from original data of 1km? reso-
lution, and the spatial distribution of these factors is
illustrated in Figs. 2 and 3.

Research unit

Basic geographic units, such as districts, counties,
towns, and streets, are frequently altered by the con-
stant changes in administrative divisions in epidemio-
logical studies. However, this phenomenon can be
effectively avoided by creating regular spatial grids
[30]. A spatial autocorrelation analysis is often used
to reflect the spatial aggregation of a feature in the

region. In this study, a series of spatial grids (1x1
km-14 x 14 km) was created, and the optimal grid of
the DF spatial pattern in each region was selected
based on Moran’s / [31]. Moran’s [ is expressed by
Eq. (1) as follows:
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where 7 is the number of grids in the study area, x;
and x; represent the number of DF cases in grids i
and j, respectively, and w; is the matrix of spatial
weight. Moran’s [ is generally tested by the Z-score/
P-value, and the value varies from -1 to 1. A higher
Moran’s I (larger Z-score and proper P-value) indi-
cates greater similarity among attributes between
adjacent spatial grids [32], which reveals that the DF
epidemic is clustered in the region, whereas a low
negative value indicates dissimilarity between adjacent
grids and shows that the DF epidemic is discretely
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Table 1 Data sources and processing of environmental and socioeconomic factors

Variables/description Data processing

Data source

Mean

temperature in each grid

Mean precipitation
in each grid

Mean relative humidity
in each grid

Vegetation index

Land use

Mean temperature from 2010 to 2014 (April-November)

Mean normalized difference vegetation index (NDVI) from
2010 to 2014 (April-November) in each grid

According to the land use coverage classification system of
the Data Center for RESDC, land use data in 2010 were divided
into cultivated land, forest land, grass land, water areas, urban

China Meteorological Data Service Center
(CMDC, http://data.cma.cn/)

Mean precipitation from 2010 to 2014 (April-November)

Mean relative humidity from 2010 to 2014 (April-November)

https://ladsweb.modaps.eosdis.nasa.gov/

Resource and Environmental Science Data Center
of the Chinese Academy of Sciences
(RESDC, www.resdc.cn)

land, rural residential areas, other construction land, and
unused land. Statistics on the proportion of various land

use areas in the grid

Population size
2010 population density data

Summing the population (persons) for each grid based on the

OpenStreetMap (http://download.geofabrik.de/)

Economic Summing the gross domestic product (GDP) values (RMB) for
conditions each grid based on the 2010 GDP data

Road Summing the road density (km/km?) for each grid based on
density the road network data in 2010

distributed in the region [33]. In this study, Moran’s I
and Z-scores of the DF cases with different grid sizes
were used to assess the optimal grid scales of the
regional DF epidemic. Spatial autocorrelation analysis
above was performed using ArcGIS 10.2 (ESRI, Red-
lands, CA, USA).

Statistical analysis

The GAM is a semiparametric model extended from the
generalized linear model [34, 35]. It can provide both
linear and nonlinear fitting to variables, and it has been
widely used in infectious epidemiology, such as for DF,
in recent years [23, 35, 36]. The model automatically se-
lects the appropriate polynomial by establishing the
smoothing function of the independent variable and
identifies and estimates the nonlinear optimality of the
model from data.

gW) =B+ D> _BX0)+ > Si(Xy) (2)

In Eq. (2), g(u) denotes a link function that can select
the corresponding link function according to the differ-
ent statistical distributions of dependent variables. Con-
sistent with previous studies, the distribution of DF
cases in this study fits a Poisson distribution [23]. Thus,
the corresponding link function for the GAM model is
log(y). The variable y refers to the number of local DF
cases in the grid from 2010 to 2014(log(DF case)), f3o is
a constant term, S,(X;) represents the linear fitting func-
tion, and Si(Xi) represents the nonlinear fitting function.
The independent variable X; represents the 12 variables
(ratio of land use area [cultivated land, forest land, water

area, rural residential land, and urban land], population
density [Pop], road density [Road], NDVI, GDP, Hum,
Temp and Pre) under the optimal grid.

The first step is to build the single factor model by
using the spline smoothing function of the GAM, and
then the goodness of fit of single factors is statistically
analyzed. Next, the variables that did not pass the sig-
nificance test in the single factor analysis are removed.
Then, variables with strong collinearity are sorted into
groups, and one variable in each group and other vari-
ables without strong collinearity are selected to build the
GAM until all permutations and combinations are con-
sidered. Finally, the optimal GAM is selected according
to the Akaike information criterion (AIC), with a better
model corresponding to smaller AIC values [21]. The
spatial data processing was completed in ArcGIS 10.2
software, and all the statistical analyses were performed
using the statistical software R 3.0.3 (Lucent Technolo-
gies, Jasmine Mountain, USA) with the mgcv library.

Results

Temporal and spatial distribution of DF

According to the China Notifiable Disease Surveillance
System, 49290 local DF cases occurred in China
between 2010 and 2014, with those in the PRD and
BYM accounting for 97.06%. Figure 4 shows that the DF
epidemic had obvious seasonal characteristics. The epi-
demic was mainly concentrated in July to November, ac-
counting for 99.95% of the annual cases, and reached
the peak incidence from August to October. In these 5
years, there were 46422 and 1419 local DF cases in the
PRD and BYM, respectively, showing an increasing trend


http://data.cma.cn/
https://ladsweb.modaps.eosdis.nasa.gov/
http://www.resdc.cn
http://download.geofabrik.de/
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Fig. 2 Spatial distributions of environmental and socioeconomic factors in the Pearl River Delta; grid scale of 4 km x4 km
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in successive years. From 2010 to 2012, there were fewer
than 500 local cases, and the number of cases in 2013
and 2014 surged to 4000 and 40 000, respectively, with
the BYM exhibiting a large-scale epidemic in 2013.

Table 2 lists the Moran’s I values of the DF cases at
different grid scales in the PRD and BYM, which were
calculated by Eq. (1). The PRD showed better cluster-
ing of DF epidemic cases at the 4km x4km grid
scale, whereas the BYM showed better clustering at
the 3kmx3km scale. Furthermore, all Moran’s [
values in the PRD were greater than those in the
BYM, which indicated that the DF epidemic of the
PRD was highly aggregated, while that of the BYM
was relatively decentralized. In terms of the spatial
distribution mapped in Fig. 5, the DF cases in the
PRD presented an aggregative distribution cantered in
the Guangzhou-Foshan region, whereas cases in the

BYM were mainly concentrated in Dehong and
Xishuangbanna Prefectures. These results demonstrate
that DF cases in the BYM and the PRD showed
significant characteristics of spatial aggregation.

GAM fitting

Pearson  correlation  coefficient  analysis (see
Additional files 2 and 3) and variable collinearity analysis
(see Additional file 4) show that strong collinearity oc-
curred in both the PRD (among the urban land ratio
[ULR], road, and GDP; among Pop, Road, and GDP; and
between the forest land ratio and NDVI) and the BYM
(among Pop, ULR, and GDP; and between Hum and Pre).
In each region, the model that passed the collinear diagno-
sis with the lowest AIC value was used as the optimal
model for the DF epidemic to avoid over fitting of the
model (see Additional file 4). Thus, the optimal GAM of
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Fig. 3 Spatial distributions of the environmental and socioeconomic factors in the Border of Yunnan and Myanmar; grid scale of 3 km x 3 km

the DF epidemic in the PRD consisted of five variables
(Pop, ULR, NDVI, Hum, and Temp), and that in the BYM
consisted of six variables (ULR, Road, NDVI, Temp, water
land ratio [WLR], and Pre). The total variance of the GAM
for the DF epidemic was 83.4% (R*=0.834, PRD) and

97.3% (R*=0.973, BYM), which shows that the GAM fit
the regional differences of the epidemic well.

Regarding the variance explained by the single factor in
the optimal GAM (see Additional file 4), socioeconomic
factors explained more of the variance (>54%) than
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Fig. 4 Ratio of monthly local cases to the total annual local cases in 2010-2014; PRD: Pearl River Delta; BYM: Border of Yunnan and Myanmar
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Table 2 Spatial autocorrelation analysis of dengue fever cases in the Pearl River Delta and the Border of Yunnan and Myanmar

from 2010 to 2014

Gridded 1km  2km  3km 4km 5km  6km  7km 8km 9km  10km 11km 12km 13km 14km
Scales
Pearl River Delta Moran's| 059 073 073 077 073 067 065 047 057 054 060 031 040 046
Zscore  417.16 20680 11904 69.81 5731 4501 4031 3573 2969 2646 2315 2076 2128 1808
Pvalle < 001 < 001 <001 < 001 <001 <001 <001 < 001 <001 <001 <001 <001 <001 < 001
Border of Morans/ 015 023 031 018 027 027 011 001 031 027 022 027 001 012
m;m:;nd Zscore 9017 5462 47.75 2057 2688 2226 2079 374 1659 1363 1198 1211 210 1044
Pvalte < 001 < 001 < 001 < 001 < 001 <001 < 001 < 001 < 001 <001 <001 <001 < 005 < 001

boldface: dengue fever cases showed significant characteristics on this grid scale

environmental factors (< 54%). Among the socioeconomic
factors, Pop and ULR explained the greatest variance in
the DF epidemic in the PRD, whereas the ULR, followed
by road density, explained the greatest variance in the DF
epidemic in the BYM. For environmental conditions,
NDVI ranked first in the two regions, followed by
Hum-Temp (PRD) and Temp-WLR-Pre (BYM). These
results show that the factors affecting the DF epidemic
were generally similar but presented slight differences be-
tween the PRD and BYM.

Comparison of the main DF factors in the two regions

As shown in Fig. 6, the nonlinear characteristics between
the DF epidemic and the independent variables were obvi-
ous. In terms of the PRD, the DF epidemic was more

serious in areas (grids) with a higher socioeconomic status,
especially in the areas with 440 < Pop <3500 (Fig. 6A1)
and ULR > 0.4 (Fig. 6A2), while the DF epidemic tended to
be stable in areas with a Pop > 3500 (Fig. 6A1). Compared
with Pop and ULR, the nonlinear characteristics between
environmental factors and the DF epidemic were more ob-
vious. Among the factors, an ‘M’ relationship was ob-
served between NDVI and the DF epidemic (Fig. 6A3),
and the DF epidemic was serious when the NDVI was
between 0.17 and 0.76, especially from 0.17 to 0.4.
Similar to the NDVI, Hum also had an ‘M’ relationship
with DF (Fig. 6A4), and the DF epidemic was relatively
serious when Hum in the region was 79.2-82.5%. In
contrast to the pattern observed for the above factors,
the DF epidemic showed a clear “break” when the

] Boundary

BYM DF case

0
.-
3-10
11-38
- 39.553 0 15 30 60 90 1%<Om

~

[ Boundary
PRD DF case

0
[ )
3-16
17-237
B 238-3501

km

River Delta; BYM: Border of Yunnan and Myanmar

Fig. 5 Spatial distribution of DF in the PRD and BYM; a BYM grids of 3 km x 3 km, and b PRD grids of 4 km x 4 km; DF: dengue fever; PRD: Pearl
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Temperature (Temp), b Border of Yunnan and Myanmar (BYM), B1, Urban land ratio (ULR), B2: Road density (Road), B3: Normalized
difference vegetation index (NDVI), B4: Temperature (Temp), B5: Water land ratio (WLR), B6: Precipitation (Pre). The solid line shows the
smooth fitting curve for the logarithm of dengue fever cases. The dashed line represents the 95% confidence intervals. The x-axis
represents the actual values of the independent variables. The y-axis indicates the logarithm of dengue fever cases fitting values. Edf
represents the estimated degrees of freedom. The y-axis is labelled s (a, edf), where a indicates the name of the variables and edf
represents the estimated degrees of freedom of the smooth function, which is used to represent its relationship with dengue fever cases

Temp of the region was 19-23 °C (Fig. 6A5), while the
DF epidemic was more severe when Temp was below
18.5°C (limited distribution) or above 23.7 °C (wider
distribution).

Compared with the PRD, the DF epidemic in the BYM
was relatively clustered in urban areas and showed gentle
fluctuations with increases in ULR (Fig. 6B1). The ULR of
the areas with relatively serious DF epidemics was ap-
proximately 0.07 and 0.3, and DF epidemics showed a
wave rise as the road density increased (Fig. 6B2).
Although the DF epidemic and the NDVI (ranking first
among environmental factors) also showed an ‘M’ rela-
tionship in the BYM (Fig. 6B3), the NDVI value in rela-
tively severe epidemic areas was 0.39-0.61. In addition,
the DF epidemic was relatively serious in the BYM where
the average Temp was higher than 17.8 °C (Fig. 6B4), the
WLR was between 0.15 and 0.20 (Fig. 6B5), and the Pre

was approximately 180 mm (Fig. 6B6). In general, the
main factors (socioeconomic and environmental factors)
and their nonlinear relationships with DF epidemics in the
PRD and BYM were significantly different.

In terms of spatial distribution, Guangzhou-Foshan, as
well as Dongguan and Shenzhen, were areas with serious
DF epidemics in the PRD (Fig. 7a). These areas appeared
to have high ULR (> 0.4), high Pop (>430), and moderate
NDVI (0.17 <NDVI <0.76). In addition, DF epidemics
were more serious if the Hum was moderate (approxi-
mately 79.5% or 81.5%) and the Temp was higher than
23.7°C. In comparison, DF epidemics in the BYM were
relatively scattered throughout the Dehong and Xishuang-
banna Prefectures (Fig. 7b). These areas have ULRs ran-
ging from O to 0.5, developed road networks (road
density > 2 km/km?), and moderate NDVIs (0.39 < NDVI
<0.61). DF epidemics were more acute in areas with Temp
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>17.8°C, Pre at moderate levels (170-190 mm), or water
bodies (ratio of approximately 0.15-0.2).

Discussion
In this study, we used the GAM to analyse and compare
the main factors that affect the differences between DF
epidemics in the PRD and BYM on the grid scale.
Strengthening our understanding of the spatial-temporal
patterns and differences between the influencing factors
of DF epidemics in China’s typical DF epidemic areas is
of considerable significance because such data can im-
prove our ability to prevent and control the DF risk in
high-incidence areas.

The epidemic characteristics of the PRD and BYM
have quite a few similarities in environmental and

socioeconomic factors. Regarding environmental condi-
tions, previous studies have shown that suitable me-
teorological conditions (Temp at 20-30°C and Hum of
75%) were conducive to mosquito breeding and
reproduction [37, 38], thereby promoting dengue virus
activity and increasing the risk of DF epidemics and
transmission [39, 40]. According to the basic data of this
study, the monthly mean Temp in the PRD and BYM is
between 10°C and 27 °C from April to November, the
monthly mean Pre is 0-360 mm, and the relative Hum
is 63—-84%. These warm and humid weather conditions
are conducive to DF transmission. In addition, the vege-
tation conditions in these two regions are good (the
average NDVI is 0.57 to 0.81). Higher or lower NDVI
values will reduce the risk of DF [41, 42]. High NDVI
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values generally indicate sparsely populated areas that
are unable to meet the conditions of human and mos-
quito contact for DF. The appropriate vegetation condi-
tions provide not only excellent conditions for the
breeding and activity of mosquitoes (Aedes albopictus is
primarily observed in the PRD, and Aedes aegypti is
primarily observed in the BYM) [43] but also cool loca-
tions in summer for humans, thereby increasing the
probability of contact between humans and mosquitoes
and promoting DF epidemic risk [44]. The warm and
humid environmental conditions in the BYM and PRD
are suitable for mosquito breeding and activity, which is
an important reason for the rapid and widespread preva-
lence of DF and presents the first similarity of DF
epidemics in these two regions.

As for the second similarity of the characteristics of
DF epidemic in these two regions, Ren et al. considered
that socioeconomic factors might play a significant role
in DF epidemics in cases where environmental factors
were suitable and differed slightly in regional [13]. This
finding is consistent with our results. Although the so-
cioeconomic status (Pop, ULR, and Road) of the PRD is
significantly greater than that of the BYM, these two re-
gions present similar differences in development, and
this finding can also be confirmed that the coefficient of
variation of socioeconomic factors is significantly higher
than that of environmental factors. In addition, Zhu et
al. noted that a certain degree of population aggregation
was an important condition for DF transmission and
prevalence [45]. The population is relatively clustered in
towns of the BYM (such as Dehong and Xishuangbanna)
and the highly urbanized regions of the PRD (such as
Guangzhou-Foshan). Therefore, this condition gives a
reasonable explanation for the relatively serious epi-
demic in these areas. In recent years, the PRD has im-
plemented active prevention and control measures, such
as water retention and mosquito prevention, and DF epi-
demics have been effectively controlled. Therefore, based
on the similarities between the two regions regarding
the spatial patterns and main influencing factors under-
lying DF epidemics, we suggest that the BYM can draw
on the experience of the PRD when formulating DF epi-
demic prevention and control strategies at the regional
level.

Compared with the similarities listed above, the dif-
ferences in the DF epidemic characteristics between
the PRD and the BYM should be further investigated.
Regarding the socioeconomic factors, previous studies
have shown that a higher ULR corresponded to a larger
population, while developed transport networks in-
creased the mobility of people in the region [23, 24, 46,
47]. The extent and concentration of DF epidemics in
the PRD are higher than those in the BYM, which is
closely related to the higher Pop, higher ULR, uniform
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road network distribution, and stronger population
mobility. The ULR of the BYM is high only in the cen-
tral town areas of Dehong and Xishuangbanna (but
still lower than that of the PRD), as are Pop and Road.
The accessibility of roads throughout the region is not
as good as that in the PRD, which can also explain why
DF epidemics in the PRD are significantly greater than
those in the BYM.

As for the regional environmental factors, the over-
all vegetation coverage in the BYM is relatively high.
Therefore, the NDVI fitting curve of the more serious
epidemic areas is shifted to the left compared with
that in the PRD. Furthermore, the terrain within the
BYM is complex, including large numbers of moun-
tains and valleys. Therefore, regional differences and
vertical changes in climate are obvious [48], which is
different from the decreasing trend of temperature
and precipitation in the PRD from south to north
and from coast to inland [49]. The coefficient of vari-
ation of the environmental factors in the BYM is also
slightly higher than that in the PRD. Meanwhile, the
risk of DF tends to be higher in Dehong and
Xishuangbanna Prefectures due to their higher annual
average Temp and Pre, thus providing a favorable liv-
ing environment for the Aedes mosquito, which is
widely distributed throughout Ruili City (Dehong Pre-
fecture) and Xishuangbanna Prefecture [50].

As for imported cases of DF, the BYM has several
ports through which DF is mainly imported by
“ground”, including Jinghong Port, Simao Waterway
Port, and the busiest port of Rili to Myanmar. These
wide ranges of trade ports promote local economic
development but also increase the risk of imported
DF cases because DF is highly prevalent in areas adja-
cent to Laos and Myanmar. In addition, Wang et al.
confirmed that the local DF epidemic in the BYM in
2013 was caused by imported cases from the neigh-
bouring countries of Southeast Asia [51]. The devel-
oped economy of the PRD results in the majority of
imported DF cases being brought by relatively
long-distance commercial travel. Meanwhile, as one of
the most densely populated areas in China, more than
one million migrant workers travel to the PRD each
year. These people live in crowded and poor sanitary
conditions and less rectified living areas, which are
conditions conducive to human-mosquito contact [23,
46]. The BYM and PRD are both important ports of
land and sea-air entry and exit in China, and they are
popular locations for tourists and migrant workers in
China. If DF epidemics develop explosive outbreaks in
both regions without being effectively controlled, they
will spread to adjacent inland areas, which will cause
serious impacts to the life and health of people in in-
land areas. Therefore, the health departments must
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consider the spatial differentiation characteristics of
the main factors affecting DF epidemics in the region
and utilize these data to formulate more specific pre-
vention and control strategies.

Several limitations are worth noting. (1) The differ-
ence in the severity of the two regional epidemics
leads to a significant difference in the confidence
interval of the fitting curve, although it does not
affect the research paradigm. (2) The effects of mos-
quito vector and control measures have not been suf-
ficiently considered, and these data should be
included in our future work. (3) The spatial correl-
ation between DF epidemics and various influencing
factors has not been properly considered in the
model, and models such as the GWR, which can con-
sider such spatial correlations, should be included in
future studies. (4) This study used the number of DF
cases from 2010 to 2014 as the dependent variable,
without carefully analysing the lagging effect and tem-
poral effect between DF and its influencing factors.

Conclusions

The environmental and socioeconomic factors in the
PRD and BYM may affect the spatial-temporal differ-
entiation of DF epidemics, and the influencing mech-
anisms have their own regional characteristics. The
differences in socioeconomic factors are more obvious
in cases where environmental factors are suitable and
differ slightly throughout areas. This study has
improved our understanding of the spatial distribution
of DF epidemics and their influencing factors in typ-
ical regions of China. We suggest that the epidemic
prevention and control strategies for the BYM should
be developed in reference to those for the PRD, com-
bined with the characteristics of the main factors
influencing the regional epidemic to effectively
strengthen the prevention and control measures for
DF epidemics.
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