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Abstract

Background: The new coronavirus disease COVID-19 began in December 2019 and has spread rapidly by
human-to-human transmission. This study evaluated the transmissibility of the infectious disease and analyzed its
association with temperature and humidity to study the propagation pattern of COVID-19.

Methods: In this study, we revised the reported data in Wuhan based on several assumptions to estimate the actual
number of confirmed cases considering that perhaps not all cases could be detected and reported in the complex
situation there. Then we used the equation derived from the Susceptible-Exposed-Infectious-Recovered (SEIR) model
to calculate R0 from January 24, 2020 to February 13, 2020 in 11 major cities in China for comparison. With the
calculation results, we conducted correlation analysis and regression analysis between R0 and temperature and
humidity for four major cities in China to see the association between the transmissibility of COVID-19 and the
weather variables.

Results: It was estimated that the cumulative number of confirmed cases had exceeded 45 000 by February 13, 2020
in Wuhan. The average R0 in Wuhan was 2.7, significantly higher than those in other cities ranging from 1.8 to 2.4. The
inflection points in the cities outside Hubei Province were between January 30, 2020 and February 3, 2020, while there
had not been an obvious downward trend of R0 in Wuhan. R0 negatively correlated with both temperature and
humidity, which was significant at the 0.01 level.

Conclusions: The transmissibility of COVID-19 was strong and importance should be attached to the intervention of
its transmission especially in Wuhan. According to the correlation between R0 and weather, the spread of disease will
be suppressed as the weather warms.
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Background
On December 8, 2019, the first case of unexplained pneu-
monia was officially reported in Wuhan, the capital of
Hubei Province in China [1]. There have been reports of
the new coronavirus disease (coronavirus disease 2019,
COVID-19, named by the World Health Organization on
February 11, 2020) since December 2019 [1, 2]. As was
reported by the National Health Commission of the Peo-
ple’s Republic of China, the number of confirmed cases
had reached 63 851 by February 13, 2020 in China, includ-
ing 1380 deaths. On the same day, Hubei Province alone
totally had 51 986 confirmed cases including 1318 deaths,
accounting for 81.4% and 95.5% of the whole country
respectively. Among them there were 35 991 confirmed
cases and 1016 deaths in Wuhan, accounting for 69.2%
and 77.1% of the number in Hubei Province respectively
[3]. The cumulative number of confirmed cases keeps ris-
ing, indicating the strong transmissibility of COVID-19,
especially in Wuhan, Hubei Province. Therefore, it is of
great importance to adopt reasonable indicators to assess
the transmission ability of the disease, based on which
effective intervention and control measures could be put
forward [4, 5].
The basic reproduction number (R0) refers to the

expected number of cases generated from a single case
when all people are susceptible to infection [6]. It is widely
used to evaluate the transmission ability of an emerging
infectious disease and determine what degree of control
measures should be taken to eradicate the disease [7–
10]. When R0 > 1, the disease starts to spread; and
when R0 < 1, the disease is effectively controlled [11].
R0 is influenced by many other factors except for the
characteristics of the disease itself, such as conditions
of the environment, policies of the government, peo-
ple’s awareness of infectious diseases, and social behavior.
Therefore, we can use R0 to measure the transmissibility
of COVID-19 and analyze its influencing factors, which
provides data support for suggestion-proposing and
decision-making.
Research on transmissible diseases like influenza [12],

severe acute respiratory syndrome (SARS) [13] and Mid-
dle East respiratory syndrome (MERS) [14] has found that
disease transmission is associated with temperature and
humidity of the environment [15–20]. In terms of bio-
logical methods, influenza virus spread was found to be
promoted by cold temperature and low relative humid-
ity with the guinea pig as a model host [21]; besides, an
experiment on the SARS coronavirus indicated that high
temperature and high humidity suppressed the spread
of the virus [22]; similarly, MERS coronavirus was more
stable when temperature or humidity was lower [23]. In
terms of statistical methods, case studies of SARS in four
major cities in China suggested that the transmissibility
had a close relationship with temperature and its variation

[24]; and a regression equation was derived to show how
temperature, relative humidity, and wind velocity affected
the transmission of SARS [25]. Thus we wonder if the
spread of COVID-19 follows a similar pattern. Consid-
ering that R0 is useful for measuring the transmission
ability of infectious diseases, we conducted association
analyses between R0 and temperature, relative humidity,
and absolute humidity respectively. Statistical methods
such as correlation and regression were adopted for the
analysis.
This paper measured the transmissibility of COVID-

19 with R0 and analyzed its correlation with temperature
and humidity. First, we revised the epidemiological data
in Wuhan to make R0 more accurate. Second, we calcu-
lated R0 and compared the average value and developing
trend of R0 in 11 cities including Wuhan. Third, we con-
ducted correlation and regression analysis between R0 and
temperature and humidity to see the association between
R0 and weather.

Methods
Data acquisition and preprocessing
The daily accumulative number of confirmed cases and
new additions are reported by the National Health Com-
mission of the People’s Republic of China as well as the
health commission of each province on the official web-
site. An R package has been developed to access the
epidemiological data directly [26]. The R package was
used by us to acquire the number of total cases and
new additions from January 18, 2020 to February 13,
2020 in Wuhan, Hubei Province considering that the sit-
uation there was complex and needed much attention.
Besides, we also collected the daily-reported accumula-
tive number of confirmed cases from January 24, 2020
to February 13, 2020 in 10 Chinese major cities outside
Hubei Province including Beijing, Chengdu, Chongqing,
Guangzhou, Hangzhou, Hefei, Nanjing, Shanghai, Shen-
zhen, and Zhengzhou (listed by initials) for further calcu-
lation, estimation, and analysis. The reasons for selecting
those 10 cities were that they were first-tier cities or capi-
tal cities in China with the top number of cases. Certainly,
Wuhan also met the criteria. Those cities could well rep-
resent the process status of the disease based on which
disposal measures could be put forward.
As for Wuhan, it was estimated by Imperial College

London, UK that the total number of confirmed diagnoses
had reached 4000 by January 18, 2020 [27], which was
much higher than the officially reported number. So we
attempted to revise the data in Wuhan to infer the actual
transmissibility of the new coronavirus. With the substan-
tial enhancement of case detection and reporting, the dif-
ferences between the official numbers and the estimates
are predicted to be fewer and fewer. There are several
assumptions for the data-preprocessing procedure:
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1) The first case appeared on December 8, 2019 in
Wuhan and transmission started from that day on
[1, 28].

2) The cumulative number of cases Y (t) by day t since
the first single case followed the exponential function
Y (t) = eλt in early development [29].

3) The cumulative number of cases on January 18, 2020
was 4000, that was, Y (41) = 4000 [27].

4) From February 13, 2020 on, all cases in Wuhan can
be confirmed and the number of daily new cases is
correct, given that the number of newly confirmed
diagnoses on February 12, 2020 in Wuhan increased
significantly, exceeding 10 000.

Based on those assumptions, the data-revising proce-
dure in Wuhan is as follows:

1) According to assumption 2 and 3, the exponential
growth rate is estimated as λ = ln[Y (41)] /41.

2) According to assumption 2 and 3, the number of
new additions on January 18, 2020 equals
Y (41) − Y (40) = 4000 − eλ∗40 = 733.

3) According to assumption 4, the number of new
additions on February 13, 2020 is 2997, which is
consistent with the officially reported number.

4) According to assumption 2, the daily number of new
additions y(t) can be calculated by

y(t) = Y (t) − Y (t − 1)
= eλt − eλ(t−1)

= eλt
(
1 − e−λ

)
. (1)

Thus

ln[ y(t)]= ln
(
1 − e−λ

) + λt. (2)

So the relationship between ln[ y(t)] and t is linear.
Replace ln

(
1 − e−λ

)
with a and λ with b in Eq. (2),

and the coefficients a and b of the linear equation
can be determined by substituting y(41) = 733 and
y(67) = 2997 into the equation respectively.

5) The number of new additions each day from January
19, 2020 to February 12, 2020 can be calculated
through the equation y(t) = ea+bt , where a and b are
the coefficients obtained in procedure 4.

6) With the daily number of new additions known, the
daily cumulative number of cases from January 19,
2020 to February 13, 2020 can be calculated by
Y (t) = Y (t − 1) + y(t), t = 42, 43, ..., 67.

As for other cities outside Hubei Province, it is assumed
that the officially reported data is accurate. Based on the
relationship ln[Y (t)]= λt, we performed logarithmic fit-
ting between the cumulative number of diagnoses and
time and inferred that transmission started on December
27, 2019 outside Hubei Province.

Calculation of the basic reproduction number
The basic reproduction number indicates the average
number of people infected by a patient during the infec-
tious period in the absence of control interventions [6].
It is also denoted R0, which measures the transmissibility
of infectious diseases. There are several ways to esti-
mate R0, including formula derivation [30, 31] and model
fitting [32–34].
We describe the transmission pattern of COVID-

19 with the Susceptible-Exposed-Infectious-Recovered
(SEIR) model. In the exposed stage, an individual infec-
tion is not able to infect others. The duration of
the exposed stage TE is also called the latent period.
While in the infectious stage with a duration of TI , an
infected person does infect susceptible people. Assum-
ing that the cumulative number of confirmed diagnoses
increases exponentially in the early stages of an epi-
demic, the relationship between the basic reproduction
number R0 and the exponential growth rate λ can be
written as [35].

R0 = (1 + λTE) (1 + λTI) . (3)

The serial interval Tg is the sum of TE and TI . Let
f = TE/Tg be the ratio of the latent period to the serial
interval, and then the basic reproduction number can be
expressed as [29].

R0 = 1 + λ (TE + TI) + λ2TETI

= 1 + λTg + λ2TE
(
Tg − TE

)

= 1 + λTg + λ2fTg
(
Tg − fTg

)

= 1 + λTg + f (1 − f )
(
λTg

)2 . (4)

The exponential growth rate is λ = ln[Y (t)] /t, where t
is the number of days required to generate the cumulative
number of Y (t) cases from the first case. According to the
research on the first 425 patients with confirmed COVID-
19, the mean latent period TE = 5.2 (days) and the mean
serial interval Tg = 7.5 (days) [36]. Adopting these values,
we can calculate the ratio of the latent period to the serial
interval by f = TE/Tg = 5.2/7.5 = 0.69.

Correlation and regression analysis between R0 and
weather
Correlation analysis is a commonly used statistical
method to study the relationship between variables [37].
Regression analysis determines the quantitative relation-
ship between two variables in statistics [38]. Among all
kinds of regression methods, linear regression establishes
the relationship between the dependent variable Y and the
independent variable X with a linear equation Y = a+bX
[39]. There are two coefficients in the equation, a as the
intercept and b as the slope. We performed correlation
analysis and linear regression between R0 and weather
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Fig. 1 Comparisons between reported and revised data in Wuhan

variables with the statistical analysis software IBM SPSS
Statistics 25. The procedure is listed below.

1) We collected the data of the daily average
temperature and relative humidity from January 24,
2020 to February 13, 2020 in four Chinese major cities
which were Beijing (the capital of China), Shanghai
(the municipality of China), Guangzhou (the capital
of Guangdong Province) and Chengdu (the capital of
Sichuan Province). We calculated absolute humidity
from the temperature and relative humidity.

2) We imported the data of temperature, relative
humidity, and absolute humidity together with R0
into the SPSS software and added cities as the
classification label.

3) Through correlation analysis, the Pearson correlation
coefficients between R0 and temperature, relative

humidity, and absolute humidity were calculated
respectively.

4) Through regression analysis, the intercept a and the
slope b of the linear equation were estimated with R0
as the dependent variable Y and temperature,
relative humidity or absolute humidity as the
independent variable X.

5) We split the data by the city label and repeated
procedure 3 and 4 for each city separately.

Sensitivity analysis of R0
To analyze the sensitivity of R0 to the three key parameters
in Eq. (4): R0 = 1+λTg+f (1−f )

(
λTg

)2, we differentiated
R0 to λ, Tg and f respectively:

∂R0
∂λ

= Tg + 2f
(
1 − f

)
λT2

g , (5)
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Fig. 2 Calculation results of the basic reproduction number

∂R0
∂Tg

= λ + 2f
(
1 − f

)
λ2Tg , (6)

∂R0
∂f

= (
1 − 2f

) (
λTg

)2 . (7)

The sensitivity of the basic reproduction number R0
to the exponential growth rate λ, the serial interval Tg ,
and the latent period ratio f can be estimated accord-
ing to the range of variables and the scale of partial
derivatives.

Table 1 The average R0 and the inflection point of each city
(listed by the average R0)

City Average R0 Inflection point

Wuhan 2.7 None

Chongqing 2.4 1/30

Beijing 2.3 2/2

Shenzhen 2.2 2/3

Shanghai 2.2 2/1

Guangzhou 2.2 2/1

Hangzhou 2.1 1/31

Chengdu 2.0 1/30

Zhengzhou 2.0 2/3

Hefei 2.0 2/2

Nanjing 1.8 2/2

Results
Comparisons of transmission among different cities
The comparison between officially reported data and
revised data in Wuhan is presented in Fig. 1 with impor-
tant points marked on it. The estimated number of cumu-
lative cases was higher than the official number every day,
and it had reached 46 933 by February 13, 2020, which
was 1.3 times that of the official number 35 991. The
unusual high peak of new cases on February 12, 2020 was
smoothed by revision.
The calculation results of the basic reproduction num-

ber R0 from January 24, 2020 to February 13, 2020 in
11 Chinese major cities are shown in Fig. 2. The values
with the label “Wuhan” were calculated using the offi-
cially reported number of cases, while those with “Wuhan
(revised)” were calculated using the revised number of
cases. In this way, the broken line of “Wuhan” reflects the
changing trend of R0, and the one of “Wuhan (revised)”
reflects the value size of R0. It is assumed that the cumula-
tive number of confirmed cases reported officially in cities
outside Hubei Province is accurate, so the broken lines of
the other 10 cities represent not only trends but also actual
values.
As can be seen from Fig. 2, R0 in Wuhan is signifi-

cantly higher than those in cities outside Hubei Province.
Besides, R0 in cities outside Hubei Province has begun to
decrease, while R0 in Wuhan does not show a significant
downward trend.
For amore detailed analysis, the average basic reproduc-

tion number of the 21 days in each city and the date of
the inflection point are presented in Table 1. The cities are
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Table 2 Correlation analysis between R0 and temperature

Pearson correlation Significance (2-tailed) n

Summary -0.459∗∗ 0.000 84

Beijing -0.429 0.052 21

Shanghai -0.735∗∗ 0.000 21

Guangzhou -0.410 0.065 21

Chengdu -0.732∗∗ 0.000 21
∗∗
Correlation is significant at the 0.01 level (2-tailed)

listed by the average R0 from high to low. The inflection
point refers to the day after which R0 shows a downward
trend.
It can be seen fromTable 1 that the average R0 inWuhan

far exceeds those in other cities, which is 0.3 higher than
that in Chongqing, the city which ranks second. It should
be noted that the average R0 in Wuhan is calculated with
the revised data to better fit the real value. In fact, the
average basic reproduction number calculated with the
officially reported data is also much higher than those in
other cities, which is 2.4.
The inflection points of cities outside Hubei Province

range from January 30 to February 3, while the inflec-
tion point of Wuhan had not appeared because the
number of confirmed cases had kept increasing rapidly
by February 13, 2020. Although R0 in Wuhan reaches
a peak on February 12, it cannot be determined that
February 12 is the inflection point. Because since
that day, Hubei Province has included the number
of clinically diagnosed cases into the number of con-
firmed cases. The modification of the diagnostic cri-
teria leads to a sudden increase of newly confirmed
patients, which explains why R0 is particularly high on
February 12.

Correlation between R0 and temperature
The Pearson correlation coefficients and significance
between R0 and temperature are shown in Table 2. The
row of “Summary” suggests that calculated as a whole,
the correlation between R0 and temperature is statisti-
cally significant at the 0.01 level. The correlation coef-
ficient is -0.459, so R0 and temperature have a negative
correlation, which means that R0 decreases as the tem-
perature increases. The higher the temperature, the lower

Table 3 Linear regression analysis of temperature to R0

a Std. error of a b Std. error of b

Summary 2.240 0.021 -0.010 0.002

Shanghai 2.424 0.045 -0.026 0.006

Chengdu 2.259 0.056 -0.026 0.006

the transmission capability. As for the analysis of each city,
R0 negatively correlates with temperature in Shanghai and
Chengdu, correlation significant at the 0.01 level. Corre-
lation is not significant in Beijing and Guangzhou. Over
the study period, the average R0 in Beijing, Shanghai,
Guangzhou, and Chengdu are 2.3, 2.2, 2.2, and 2.0 respec-
tively and the average temperatures are -1.0 ◦C, 7.9 ◦C,
14.9 ◦C, and 9.9 ◦C respectively. There is not a signifi-
cant relationship between the average R0 in a city versus
its average temperature (r = −0.486, P > 0.5).
Linear regression was performed on the data for all

cities combined as well as the data in Shanghai and
Chengdu which showed a significant correlation. Table 3
presents the linear regression results. Replace a and b in
the equation R0 = a + bT (where T is temperature) with
the corresponding actual values in Table 3, and correla-
tion between R0 and temperature can be expressed more
precisely. For example, the linear regression equation of
Shanghai is written as R0 = 2.424 − 0.026T . It can be
inferred from b < 0 that R0 negatively correlates with
temperature in Shanghai, which is consistent with the
correlation analysis result above.
We plotted every pair of temperature and R0 in a city or

the whole data on the scatter figure to make correlation
more intuitive, which was presented in Fig. 3. The regres-
sion lines followed the corresponding linear regression
equations.

Correlation between R0 and relative humidity
The Pearson correlation coefficients and significance
between R0 and relative humidity are presented in Table 4.
According to the first row, the correlation between R0 and
relative humidity is statistically significant at the 0.01 level
in general. The correlation coefficient is -0.391, indicat-
ing that R0 decreases as the relative humidity increases.
As for the analysis of each city, R0 negatively correlates
with relative humidity in Beijing and Shanghai, which is
significant at the 0.01 level. While the correlation is signif-
icantly positive in Chengdu at the 0.01 level, which implies
that the transmission ability and relative humidity have
consistent trends there. Correlation is not significant in
Guangzhou.
The correlation was significant in Beijing, Shanghai, and

Chengdu, and thus we conducted linear regression on
the data of the three cities as well as the summary of
all cities. The linear regression results are presented in
Table 5. Replace a and b in the equation R0 = a + bRH
(where RH is relative humidity) with the corresponding
actual values in Table 5, and the correlation between R0
and relative humidity can be expressed with a quantitative
method.
The scatterplots and corresponding regression lines of

relative humidity and R0 summarized across all cities and
by individual cities are presented in Fig. 4.
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Fig. 3 Scatter plot of temperature and basic reproduction number

Table 4 Correlation analysis between R0 and relative humidity

Pearson correlation Significance (2-tailed) n

Summary -0.391∗∗ 0.000 84

Beijing -0.568∗∗ 0.007 21

Shanghai -0.722∗∗ 0.000 21

Guangzhou -0.363 0.106 21

Chengdu 0.619∗∗ 0.003 21
∗∗
Correlation is significant at the 0.01 level (2-tailed)

Correlation between R0 and absolute humidity
The Pearson correlation coefficients and significance
between R0 and absolute humidity are presented in
Table 6. The negative correlation between R0 and abso-
lute humidity is significant in general as well as in Beijing,
Shanghai and Guangzhou and the absolute values of the
Pearson correlation coefficients for absolute humidity are
larger than those for relative humidity, indicating that
the relationship is stronger for absolute humidity than
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Table 5 Linear regression analysis of relative humidity to R0

a Std. error of a b Std. error of b

Summary 2.415 0.067 -0.004 0.001

Beijing 2.417 0.056 -0.003 0.001

Shanghai 2.542 0.072 -0.004 0.001

Chengdu 1.651 0.103 0.005 0.001

relative humidity. The correlation is not significant in
Chengdu.
We conducted linear regression on the data of Beijing,

Shanghai, Guangzhou as well as the summary of all cities.
The linear regression results are presented in Table 7.
Replace a and b in the equation R0 = a+bAH (where AH
is absolute humidity) with the corresponding actual values
in Table 7, and the correlation between R0 and absolute
humidity can be expressed with a quantitative method.
The scatterplots and corresponding regression lines of

absolute humidity and R0 summarized across all cities and
by individual cities are presented in Fig. 5.

Sensitivity of R0 to parameters
Substitute the variables in Eqs. (4–7) with λ = 0.1372
(which is the average λ from January 24 to February 13 in
Beijing), Tg = 7.5 and f = 0.69, and the specific values
can be calculated:

R0 = 2.3, (8)

∂R0
∂λ

= 10.8, (9)

∂R0
∂Tg

= 0.197, (10)

∂R0
∂f

= −0.41. (11)

When the variables fluctuate within a small range
around the given value, R0 increases as λ or Tg increases
and decreases as f increases. λ,Tg and f range at the scales
of 10−2, 100 and 10−1 respectively. And the scales of their
partial derivatives are 101, 10−1 and 10−1. Thus the fluctu-
ation scales of R0 are 10−1, 10−1 and 10−2 corresponding
to λ, Tg and f , which implies that R0 is more sensitive to
λ and Tg than f . The accuracy of parameters or variables
is important for the estimation of the basic reproduction
number. As the research on COVID-19 progresses, we can
get more precise data and better describe the transmis-
sion pattern of the new coronavirus. But the calculation
in this paper still makes sense, considering that we focus
on relative values instead of absolute values of R0 in com-
parison and correlation analysis. Results are reasonable as
long as we use the consistent equation and parameters to
calculate R0. By comparison, we can see that the control
of COVID-19 is especially urgent in Wuhan and people in

other cities should also attach importance to inhibiting the
spread of the disease. The vigilance cannot languish until
R0 drops below 1.

Discussion
Differences between correlation and causation
In this paper, we discovered the negative correlation
between the transmissibility of COVID-19 and tempera-
ture and humidity. However, it should be emphasized that
correlation is different from causation. According to the
Oxford Dictionary, correlation is a connection between
two things in which one thing changes as the other does,
while causation is the process of one event causing or
producing another event. We are not able to infer the
causal relationship between two variables solely based on
the correlation between them. Correlation is the neces-
sary and insufficient condition of causation. Our results
indicated that the transmissibility of COVID-19 was likely
to decrease as the temperature and humidity increased.
But it did not mean that the increase of temperature or
humidity was the cause of the decrease of the transmis-
sibility. We were not able to control other variables in
the observation, such as population migration and inter-
ventions, which might also affect the transmissibility of
COVID-19. So perhaps future work is needed to find
out if the changes in temperature or humidity cause the
changes in the transmissibility. For example, biological
experiments can be conducted by setting the temperature
or humidity as the independent variable and the transmis-
sibility of the coronavirus as the dependent variable and
controlling other irrelevant variables with the elimination
method, constant method, matching method or random-
ization. Nevertheless, this paper makes sense in terms of
confirming that the transmissibility of COVID-19 has a
correlation with temperature and humidity and that there
is probably a causation relationship between them which
deserves further research.

Effects of temperature and humidity on the transmission of
COVID-19
A recent study indicated that temperature and relative
humidity held no significant associations with the trans-
missibility of COVID-19 [40]. It is a very comprehensive
and well-conducted research, but we took a step further
to take the time series into account by using every-
day temperature and humidity. The results show that
the overall correlation between R0 and temperature or
humidity is significantly negative, which is consistent with
the results of the biological and statistical research on
other infectious diseases. It could be explained in sev-
eral aspects. First, in terms of biological characteristics,
a lot of research has confirmed that viruses decay more
quickly at high temperature and high humidity [19, 41,
42]. Second, in terms of the transmission media, viruses



Guo et al. Infectious Diseases of Poverty            (2020) 9:87 Page 9 of 13

Fig. 4 Scatter plot of relative humidity and basic reproduction number

spread as droplets or aerosols, which maintain large par-
ticle sizes at high humidity and thus can settle rapidly or
be blocked by masks, nasal cavity, etc [19]. Third, in terms
of human immunity, high temperature and high humid-
ity protect the immune organs and benefit people’s health.
To sum up, the spread of COVID-19 is likely to weaken
at relatively high temperature and humidity and special
attention should be paid to the prevention and control of
COVID-19 in the coming winter.

Table 6 Correlation analysis between R0 and absolute humidity

Pearson correlation Significance (2-tailed) n

Summary -0.521∗∗ 0.000 84

Beijing -0.747∗∗ 0.000 21

Shanghai -0.854∗∗ 0.000 21

Guangzhou -0.491∗ 0.024 21

Chengdu -0.166 0.471 21
∗∗
Correlation is significant at the 0.01 level (2-tailed)

∗
Correlation is significant at the 0.05 level (2-tailed)
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Table 7 Linear regression analysis of absolute humidity to R0

a Std. error of a b Std. error of b

Summary 2.316 0.031 -0.025 0.005

Beijing 2.412 0.034 -0.055 0.011

Shanghai 2.457 0.034 -0.038 0.005

Guangzhou 2.372 0.087 -0.023 0.009

As for the correlation in each city, R0 negatively cor-
relates with both temperature and humidity in Shang-
hai; R0 negatively correlates with humidity in Beijing,
while the correlation with temperature is not signif-
icant; R0 negatively correlates with absolute humidity
in Guangzhou, while the correlation with temperature
and relative humidity is not significant; R0 negatively

Fig. 5 Scatter plot of absolute humidity and basic reproduction number
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correlates with temperature in Chengdu, while the corre-
lation with relative humidity is positive and the correlation
with absolute humidity is not significant. The deviation of
the results may be due to several factors.
First, considering that COVID-19 began in winter, peo-

ple’s activity and virus transmission mainly occur indoors.
In China, the cities north of the Qinling Mountains-
Huaihe River Line have central heating indoors in winter.
Beijing is north of the Qinling Mountains-Huaihe River
Line and Shanghai, Guangzhou, and Chengdu are south
of the line. Therefore, the indoor temperature is proba-
bly much higher than the outdoor temperature in Beijing,
while the indoor temperature may follow a similar pat-
tern as the outdoor temperature in the other three cities.
The indoor temperature is probably higher in Beijing than
that in Shanghai, Guangzhou, and Chengdu. Although
the indoor temperature and the outdoor temperature may
have some association, it would be better if we could
measure the indoor temperature directly. As for humid-
ity, it has been found that outdoor absolute humidity can
be more reliably used as a proxy for indoor exposure
compared with relative humidity [43, 44]. Therefore, the
correlation between R0 and absolute humidity may better
reveal the situation indoors than relative humidity. Actu-
ally, the Pearson correlation coefficients between R0 and
absolute humidity are larger than those between R0 and
relative humidity, proving that the relationship is stronger
for absolute humidity than relative humidity.
Second, although Beijing, Shanghai, Guangzhou, and

Chengdu are all first-tier cities in China with many simi-
larities like buildings, there are some differences between
Chengdu and the other cities that may help explain the
positive correlation with relative humidity. Chengdu is
located in the southwest of China, the west of Sichuan
Basin and the hinterland of Chengdu Plain with a subtrop-
ical monsoon humid climate, different from Beijing which
has a warm temperate semi-humid continental monsoon
climate. The air is more humid in Chengdu than that in
Beijing. The climate in Chengdu is similar to the subtrop-
ical monsoon climate in Shanghai and Guangzhou, but
Chengdu is an inland city while Shanghai and Guangzhou
are coastal cities.
Third, the effect of weather on COVID-19 is com-

plicated. The joint distribution between weather and
potential confounders should be taken into account.
For example, population movement might trigger the
transmission of COVID-19 [45]. As for the effects
of interventions, we have plotted the time series of
temperatures from January 24, 2020 to February 13,
2020 in Beijing, Shanghai, Guangzhou, and Chengdu in
Additional file 1: Figure S1. It could be seen from the
figure that the temperature kept fluctuating during this
period. Considering that the strength of interventions was
relatively steady without big fluctuations, which was dif-

ferent from the trends of temperature, perhaps the effects
of interventions could be separated from the trends in
temperature.

Conclusions
In this paper, we calculated and compared the basic repro-
duction number of COVID-19 in 11 major cities in China
and analyzed its association with temperature and humid-
ity in Beijing, Shanghai, Guangzhou, and Chengdu to find
out the transmissibility of COVID-19 in different cities
and its changing trend with the weather. We conclude
that the spread of COVID-19 is most violent in Wuhan,
Hubei Province and R0 negatively correlates with temper-
ature, relative humidity, and absolute humidity. Therefore,
effective action should be taken to control the transmis-
sion of COVID-19 especially in Hubei Province and the
transmissibility is predicted to be reduced as the weather
warms.
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