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Abstract 

Background:  Many studies have compared the performance of time series models in predicting pulmonary tuber‑
culosis (PTB), but few have considered the role of meteorological factors in their prediction models. This study aims to 
explore whether incorporating meteorological factors can improve the performance of time series models in predict‑
ing PTB.

Methods:  We collected the monthly reported number of PTB cases and records of six meteorological factors in three 
cities of China from 2005 to 2018. Based on this data, we constructed three time series models, including an autore‑
gressive integrated moving average (ARIMA) model, the ARIMA with exogenous variables (ARIMAX) model, and a 
recurrent neural network (RNN) model. The ARIMAX and RNN models incorporated meteorological factors, while the 
ARIMA model did not. The mean absolute percentage error (MAPE) and root mean square error (RMSE) were used to 
evaluate the performance of the models in predicting PTB cases in 2018.

Results:  Both the cross-correlation analysis and Spearman rank correlation test showed that PTB cases reported 
in the study areas were related to meteorological factors. The predictive performance of both the ARIMA and RNN 
models was improved after incorporating meteorological factors. The MAPEs of the ARIMA, ARIMAX, and RNN models 
were 12.54%, 11.96%, and 12.36% in Xuzhou, 15.57%, 11.16%, and 14.09% in Nantong, and 9.70%, 9.66%, and 12.50% 
in Wuxi, respectively. The RMSEs of the three models were 36.194, 33.956, and 34.785 in Xuzhou, 34.073, 25.884, and 
31.828 in Nantong, and 19.545, 19.026, and 26.019 in Wuxi, respectively.

Conclusions:  Our study revealed a possible link between PTB and meteorological factors. Taking meteorological 
factors into consideration increased the accuracy of time series models in predicting PTB, and the ARIMAX model was 
superior to the ARIMA and RNN models in study settings.
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Background
Tuberculosis (TB) is a chronic communicable disease 
that severely threatens human health, ranking among 
the top ten causes of death worldwide. The World Health 
Organization (WHO) estimated that approximately 
10 million people fell ill with TB around the world in 
2019. Furthermore, there were an estimated 1.2 million 
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TB deaths among HIV-negative people and 208 000 TB 
deaths among HIV-positive people [1]. To curb the TB 
epidemic, the WHO set a goal of reducing the morbid-
ity and mortality of TB by 90% and 95%, respectively, 
between 2015 and 2035. Accurately predicting the trend 
of this epidemic can help foresee the possible peaks and 
provide a reference for the prevention and control of TB 
[2].

A time series is formed by recording the development 
process of a random event over time. Time series analy-
sis plays a vital role in predicting trends by identifying 
the way in which health-related events change with time. 
The autoregressive integrated moving average (ARIMA) 
model is the most classic time series analysis model 
and has been widely applied to predict various infec-
tious diseases, such as hepatitis B [3], hemorrhagic fever 
with renal syndrome [4], coronavirus disease 2019 [5], 
and hand, foot and mouth disease [6]. The ARIMA with 
exogenous variables (ARIMAX) model exhibits superior 
prediction performance by adding other event-related 
factors as input variables. Another commonly used time 
series analysis model is based on an artificial neural net-
work (ANN), which is designed to simulate the way the 
human brain analyzes and processes information. The 
ANN has been applied to construct time series models to 
forecast human diseases [7, 8]. The recurrent neural net-
work (RNN) is a specific ANN with the ability to trans-
fer information across time steps, as it can remember 
previous information and apply it to the current output 
calculation. The ability to model temporal dependencies 
makes it particularly appropriate to analyze a time series, 
which consists of a sequence of points that are not inde-
pendent [9, 10].

Time series analyses have been used to predict TB mor-
bidity or mortality, but most were conducted in one city 
or one region and based on one or two models that did 
not incorporate meteorological factors [11, 12]. Our pre-
vious study has revealed that the incidence of TB exhibits 
seasonal fluctuations, indicating a potential relationship 
with meteorological factors [13]. Thus, in the current 
study, we performed a time series analysis in three cities 
of Jiangsu Province, China, and applied different models 
(ARIMA, ARIMAX, and RNN) to explore whether the 
inclusion of meteorological factors can improve the per-
formance of prediction modeling.

Methods
Study areas
Jiangsu Province is located on the eastern coast of China, 
with an area of 107 200 square kilometers. It governed 
13 cities and had a permanent population of 80.7 mil-
lion at the end of 2019. We randomly selected one city 
from northern, central, and southern Jiangsu and finally 

included Xuzhou, Nantong, and Wuxi as the study sites. 
The geographical locations of the three cities in Jiangsu 
Province are shown in Fig.  1. The ranking of the gross 
domestic product (GDP) per capita within the province 
in 2019 was 9 for Xuzhou, 7 for Nantong, and 1 for Wuxi, 
and the population density in 2019 was 750.16 people/m2 
for Xuzhou, 914.64 people/m2 for Nantong and 1424.43 
people/m2 for Wuxi.

Data collection
All newly diagnosed PTB cases in China are registered in 
an online surveillance system (https​://10.249.6.18:8880/) 
operated by the Center for Disease Control and Preven-
tion. The registry system is a particular virtual private 
network. For confidentiality, only authorized organi-
zations can log in. We extracted the monthly reported 
number of pulmonary TB (PTB) cases in the study sites 
between 2005 and 2018. We also collected local meteor-
ological factors at the same time from the China Mete-
orological Data Network (https​://www.nmic.cn/). These 
meteorological factors included monthly average temper-
ature (MAT, °C), monthly average atmospheric pressure 
(MAP, hPa), monthly average wind speed (MAS, m/s), 
monthly average relative humidity (MAH, %), monthly 
precipitation (MP, mm), and monthly sunshine time 
(MST, h).

Construction of the ARIMA model
As described in our previous study [13], we constructed a 
seasonal ARIMA model, which was expressed as ARIMA 
(p, d, q)(P, D, Q)s. The variables p, d, and q represent the 
autoregressive model order, the number of ordinary dif-
ferences, and the moving-average model order, respec-
tively. The variables P, D, and Q represent the seasonal 

Fig. 1  Geographical locations of the three cities in Jiangsu Province

https://10.249.6.18:8880/
https://www.nmic.cn/
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autoregressive model order, the number of seasonal dif-
ferences, and the seasonal moving-average model order, 
respectively. Variables represent the length of a periodic 
pattern (s = 12 in this study). The number of PTB cases 
predicted at time t ( Yt ) was determined by the for-
mula:Yt =

θq(B)�Q(B
s)at

�P(Bs)φp(B)(1−B)d(1−Bs)D
 , where θq(B) is the 

operator of the moving-average model, �Q(B
s) is the 

operator of the seasonal-moving average model, φp(B) is 
the operator of the autoregressive model, �P(B

s) is the 
operator of the seasonal autoregressive model, (1− B)d is 
the component of the ordinary differences, (1− Bs)D is 
the component of the seasonal differences, at is white 
noise and Yt is the predicted variable [14, 15]. Based on 
the monthly number of PTBs, we constructed an ARIMA 
model for each city. First, we applied the ordinary differ-
ences and seasonal differences to make the series station-
ary. Second, by referring to the autocorrelation function 
(ACF) and partial autocorrelation function (PACF) plots 
of the stationary series, we initially identified the values 
of the parameters (p, q, P, and Q) to establish alternative 
ARIMA models. Third, we determined the optimal 
ARIMA model according to three criteria: (a) the nor-
malized value of  Bayesian information criterion (BIC; 
smaller values indicated better models); (b) the degree to 
which the residual series of the model was demonstrated 
to be white noise by the Ljung-Box test; (c) the presence 
of significant parameters according to the parameter esti-
mation. Finally, we selected the optimal ARIMA model to 
predict PTB cases in 2018.

Construction of the ARIMAX model
The ARIMAX model adds exogenous variables based on 
the ARIMA model and can be described by the for-
mula:Yt =

θq(B)�Q(B
s)at

�P(Bs)φp(B)(1−B)d(1−Bs)D
+ X , where X repre-

sents the external regressor, which can be univariate or 
multivariate. The other parameters are consistent with 
the ARIMA model [14]. Based on the monthly number of 
PTB cases and six meteorological factors, we constructed 
an ARIMAX model for each city. First, we constructed 
the optimal ARIMA model for each meteorological fac-
tor and obtained the residual series of the optimal 
ARIMA models, ensuring that they were all white noise. 
Second, we used the cross-correlation function (CCF) to 
analyze the residual series of PTB cases and meteorologi-
cal factors to evaluate the correlation between them at 
different lag times. Third, we included different combina-
tions of significant meteorological factors as external var-
iables into the optimal ARIMA model to construct 
alternative ARIMAX models. Finally, we determined the 
optimal ARIMAX model according to three criteria: (a) a 
normalized BIC value smaller than the optimal value; (b) 

the degree to which the residual series of the model was 
demonstrated to be white noise by the Ljung-Box test; (c) 
the performance of the model in predicting PTB cases in 
2018.

Construction of the RNN model
The ANN usually consists of an input layer, a hidden layer, 
and an output layer. The layers of the traditional ANN 
are fully connected, but the neurons in each layer are not 
connected. The RNN is different from the ANN in that it 
adds connections between the neurons in the hidden layer 
(Fig.  2a). Figure  2b shows the unfolding diagram of the 
forward propagation of the RNN [16], where xt represents 
the input at time t , ht represents the hidden state at time 
t and is modeled as ht = sigmoid(W ∗ ht−1 +U ∗ xt) , 
W  represents the weight of the input, U represents the 
weight of the input at the moment, yt represents the out-
put at time t , yt = softmax(V ∗ ht) , and V  represents the 
weight of the output. Therefore, the input of the hidden 
layer of the RNN includes not only the output of the input 
layer but also the previous output of the hidden layer, 

Fig. 2  The recurrent neural network (RNN). a The structure diagram 
of the RNN; b The unfolding diagram of the forward propagation of 
the RNN. Xt : input at time t  ; ht : hidden state at time t  ; yt : output at 
time t  ; W : weight of the input; U : weight of the input at the moment; 
V  : weight of the output
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granting the model memory. We divided the data into a 
training set, testing set, and predicting set. We trained 
each RNN model three times and compared their perfor-
mance on the testing set to determine the optimal RNN 
model. For each RNN model, we set the learning rate to 
0.05, 0.1, and 0.2 and the dimensions of the hidden layer 
to 3, 5, and 10, respectively, and identified the appropri-
ate training epochs through an epoch-error plot. By 
comparing the performance of the model with the test-
ing set, we determined the most suitable parameters for 
each RNN model. First, we normalized the original data 
to convert all values to intervals [0, 1], using the formula: 
X
′
=

X−Xmin
Xmax−Xmin

 , where X is the original value, Xmax is the 
maximum value of the original data, Xmin is the minimum 
value of the original data, and X′ is the normalized value 
after conversion. Second, we used the number of PTB 
cases in the previous month and the previous two, three, 
six, and twelve months as sequential inputs of the train-
ing set and the number of PTB cases in the current month 
as the output of the training set to construct five different 
RNN models (RNN1–RNN5), which did not incorporate 
meteorological factors. We compared the performance of 
five RNN models on the testing set and selected the best 
model to incorporate meteorological factors into it. Third, 
we used the Spearman rank correlation test to evaluate 
the correlation between PTB cases in the current month 
and meteorological factors one, two, and three months 
prior. Fourth, we incorporated the significant meteoro-
logical factors into the best model of RNN1-RNN5 to 
construct another four RNN models (RNN6–RNN9). 
Finally, we compared the performance of nine RNN mod-
els on the testing set to determine the optimal model and 
applied it to predict PTB cases in 2018.

Evaluating the performance of the three models
Considering that the mean absolute percentage error 
(MAPE) and root mean square error (RMSE) have been 
widely used to compare the performance of time series 
models [3, 17], they were used here to evaluate the perfor-

mance of the three models: MAPE =
1

n

∑
n

i=1

∣∣∣Xi−X̂i

∣∣∣∗100
Xi

 

and RMSE =

√
1

n

∑
n

i=1
(Xi − X̂i)

2
 , where Xi is the actual 

value at time i , X̂i is the output value of the model at time 
i and n is the number of samples.

Statistical software
We used SPSS 25.0 (IBM Corp., Armonk, NY, USA) to 
construct the ARIMA and ARIMAX models and the 
package “rnn” in R 3.6.3 (https​://www.r-proje​ct.org/) to 
construct the RNN model. The significance level was set 
at 0.05.

Results
Description of the PTB notification rate and meteorological 
factors
The annual PTB notification rates between 2005 and 
2017 of Xuzhou, Nantong, and Wuxi was 56.41/100 000, 
59.93/100 000, and 57.10/100 000, respectively. The range 
of annual notification rates for PTB was 31.54/100 000 to 
78.96/100 000 in Xuzhou, 35.42/100 000 to 92.63/100 000 
in Nantong, and 43.65/100 000 to 87.13/100 000 in Wuxi. 
The description of the monthly meteorological factors in 
the three cities between 2005 and 2017 is listed in Addi-
tional file 1: Table S1.

The ARIMA model
The monthly number of PTB cases showed a long-term 
downward trend and seasonal fluctuations, with a peak in 
March to April and a trough in December to January (in 
Xuzhou) or January to February (in Nantong and Wuxi) 
(Fig.  3). Therefore, we applied one ordinary difference 
and one seasonal difference to make the series stationary 
(d = D = 1). Then, we initially identified the parameters of 
the ARIMA model (p, q, P, and Q) to construct alterna-
tive models for each city according to the ACF and PACF 
plots of the stationary series (Additional file 1: Figure S1, 
a1–a3, and b1–b3). We determined the optimal ARIMA 
model to be ARIMA (1,1,1)(0,1,1)12 for Xuzhou and 
ARIMA (0,1,1)(0,1,1)12 for Nantong and Wuxi because 
(1) they had the smallest normalized BIC, (2) their resid-
ual series were demonstrated to be white noise, and (3) 
the parameters were all significant (P < 0.05) (Additional 
file 1: Table S2, c1–c3, and d1–d3 of Additional file 1: Fig-
ure S1). PTB cases in 2018 were predicted by the optimal 
ARIMA model and are listed in Table 1.

The ARIMAX model
The time series plots of the six meteorological factors 
in the three cities between 2005 and 2017 are shown 
in Additional file  1: Figure S2. The optimal ARIMA 
models for the MAT, MAP, MAS, MAH, MP and MST 
were ARIMA (0,0,0)(0,1,1)12, ARIMA (0,0,0)(0,1,1)12, 
ARIMA (0,1,1)(0,1,1)12, ARIMA (1,0,0)(2,1,0)12, ARIMA 
(0,0,0)(0,1,1)12, and ARIMA (0,1,1)(0,1,1)12 for Xuzhou, 
ARIMA (1,0,1)(0,1,1)12, ARIMA (0,0,1)(0,1,1)12, ARIMA 
(0,1,1)(1,1,0)12, ARIMA (1,1,1)(1,1,0)12, ARIMA (0,0,0)
(0,1,1)12, and ARIMA (1,0,1)(0,1,1)12 for Nantong, and 
ARIMA (0,0,0)(2,1,0)12, ARIMA (0,0,1)(0,1,1)12, ARIMA 
(0,1,1)(0,1,1)12, ARIMA (0,1,2)(0,1,1)12, ARIMA (0,0,0)
(0,1,1)12, and ARIMA (1,1,1)(0,1,1)12 for Wuxi, respec-
tively. We then estimated the correlation between PTB 
and each meteorological factor at different lag times. 
The CCF plots showed that PTB was positively corre-
lated with MAS (2-month lag), MAH (1-month lag) and 
MP (2-month lag) and negatively correlated with MST 

https://www.r-project.org/
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(1-month lag) in Xuzhou. PTB was positively correlated 
with MAT (0-month lag), MAP (1-month lag) and MAS 
(2-month lag) in Nantong and was positively corre-
lated with MST (0-month lag) and negatively correlated 
with MAH (0-month lag) (P < 0.05) in Wuxi (Fig. 4). We 

incorporated different combinations of significant mete-
orological factors as external variables into the optimal 
ARIMA model to construct alternative ARIMAX models 
(Table  2). Finally, we determined the optimal ARIMAX 
model to be ARIMA (1,1,1)(0,1,1)12 with MP (2-month 

Fig. 3  Monthly pulmonary tuberculosis cases in the three cities between 2005 and 2017

Table 1  The monthly number of  pulmonary tuberculosis cases in  the  three cities in  2018 predicted by  the  ARIMA, 
ARIMAX, and RNN models

ARIMA autoregressive integrated moving average, ARIMAX autoregressive integrated moving average with exogenous variables, RNN recurrent neural network

Month Xuzhou city Nantong city Wuxi city

Observation ARIMA ARIMAX RNN Observation ARIMA ARIMAX RNN Observation ARIMA ARIMAX RNN

January 237 239 227 258 193 145 177 194 158 137 135 141

February 188 259 249 249 177 149 163 202 112 143 141 170

March 300 323 304 227 261 216 258 209 194 174 175 177

April 273 291 277 285 221 195 202 219 188 177 184 139

May 271 288 283 282 251 196 212 206 206 178 181 194

June 273 293 286 285 230 196 204 224 183 202 204 188

July 229 242 237 250 204 167 186 200 218 183 187 193

August 248 257 237 242 166 195 205 218 206 198 200 214

September 169 255 247 215 170 189 170 207 203 195 199 192

October 208 206 238 192 151 134 125 178 150 160 170 177

November 193 209 243 180 149 146 150 183 191 183 181 199

December 241 206 240 201 162 195 212 190 177 178 181 179
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Fig. 4  Cross-correlation function plots of the residual series of pulmonary tuberculosis and meteorological factors. a: PTB and MAT; b PTB and MAP; 
c PTB and MAS; d PTB and MAH; e PTB and MP; f PTB and MST; 1: Xuzhou; 2: Nantong; 3: Wuxi. PTB: Pulmonary tuberculosis; MAT: Monthly average 
temperature; MAP: Monthly average atmospheric pressure; MAS: Monthly average wind speed; MAH: Monthly average relative humidity; MP: 
Monthly precipitation; MST: Monthly sunshine time
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lag) for Xuzhou, ARIMA (0,1,1)(0,1,1)12 with MAP 
(1-month lag) for Nantong and ARIMA (0,1,1)(0,1,1)12 
with MAH (0-month lag) for Wuxi. PTB cases in 2018 
were predicted by the optimal ARIMAX model and are 
listed in Table 1.

The RNN model
We compared the MAPE of each RNN model with 
different parameters using the testing set to identify 
the appropriate parameters. The RNN5 model had 
the smallest MAPE with the testing set in each city 
(Table  3). The number of PTB cases in the current 
month in Xuzhou was positively correlated with MAS 
one month prior (P < 0.01), with MAS two months prior 
(P < 0.01), and with MAS three months prior (P < 0.01) 

and negatively correlated with MST two months prior 
(P < 0.01), with MAT three months prior (P < 0.01), 
with MP three months prior (P < 0.05), and with MST 
three months prior (P < 0.01). The number of PTB cases 
in the current month in Nantong was negatively cor-
related with MAS one month prior (P < 0.05), MAH 
one month prior (P < 0.05), MAS two months prior 
(P < 0.01), MAH two months prior (P < 0.01), MAS 
three months prior (P < 0.01), and MAH three months 
prior (P < 0.05). The number of PTB cases in the current 
month in Wuxi was positively correlated with MAT one 
month prior (P < 0.01), MAS one month prior (P < 0.01), 
MST one month prior (P < 0.05), MAS two months 
prior (P < 0.01), and MAS three months prior (P < 0.01) 
and negatively correlated with MAP one month prior 

Table 2  Alternative ARIMAX models for the three cities

BIC Bayesian information criterion, MAPE mean absolute percentage error, MAT monthly average temperature; MAP monthly average atmospheric pressure, MAS 
monthly average wind speed, MAH monthly average relative humidity, MP Monthly precipitation, MST monthly sunshine time, 0 0-month lag, 1 1-month lag, 2 
2-month lag
*  Ljung-Box test
a   MAPE of the model in predicting the monthly number of PTB cases in 2018

City Model Normalized BIC value P* MAPE (%)a

Xuzhou ARIMA (1,1,1)(0,1,1)12 8.857 0.861 12.54

ARIMA (1,1,1)(0,1,1)12 + MAS2 8.595 0.714 14.05

ARIMA (1,1,1)(0,1,1)12 + MAH1 8.467 0.399 24.09

ARIMA (1,1,1)(0,1,1)12 + MP2 8.617 0.356 11.96

ARIMA (1,1,1)(0,1,1)12 + MST1 8.593 0.767 17.62

ARIMA (1,1,1)(0,1,1)12 + MAS2 + MAH1 8.609 0.338 25.02

ARIMA (1,1,1)(0,1,1)12 + MAS2 + MP2 8.658 0.691 17.22

ARIMA (1,1,1)(0,1,1)12 + MAS2 + MST1 8.679 0.902 17.34

ARIMA (1,1,1)(0,1,1)12 + MAH1 + MP2 8.560 0.431 20.68

ARIMA (1,1,1)(0,1,1)12 + MAH1 + MST1 8.604 0.416 24.30

ARIMA (1,1,1)(0,1,1)12 + MP2 + MST1 8.674 0.751 17.55

ARIMA (1,1,1)(0,1,1)12 + MAS2 + MAH1 + MP2 8.700 0.371 20.71

ARIMA (1,1,1)(0,1,1)12 + MAS2 + MAH1 + MST1 8.755 0.427 23.01

ARIMA (1,1,1)(0,1,1)12 + MAS2 + MP2 + MST1 8.755 0.851 17.21

ARIMA (1,1,1)(0,1,1)12 + MAH1 + MP2 + MST1 8.692 0.241 39.17

ARIMA (1,1,1)(0,1,1)12 + MAS2 + MAH1 + MP2 + MST1 8.831 0.581 17.44

Nantong ARIMA (0,1,1)(0,1,1)12 8.609 0.433 15.57

ARIMA (0,1,1)(0,1,1)12 + MAT0 8.288 0.981 16.77

ARIMA (0,1,1)(0,1,1)12 + MAP1 8.183 0.777 11.16

ARIMA (0,1,1)(0,1,1)12 + MAS2 8.323 0.730 16.29

ARIMA (0,1,1)(0,1,1)12 + MAT0 + MAP1 8.340 0.836 14.99

ARIMA (0,1,1)(0,1,1)12 + MAT0 + MAS2 8.419 0.965 16.97

ARIMA (0,1,1)(0,1,1)12 + MAP1 + MAS2 8.314 0.766 11.90

ARIMA (0,1,1)(0,1,1)12 + MAT0 + MAP1 + MAS2 8.470 0.892 13.06

Wuxi ARIMA (0,1,1)(0,1,1)12 6.933 0.176 9.70

ARIMA (0,1,1)(0,1,1)12 + MAH0 6.845 0.119 9.66

ARIMA (0,1,1)(0,1,1)12 + MST0 6.818 0.068 10.51

ARIMA (0,1,1)(0,1,1)12 + MAH0 + MST0 7.003 0.088 9.74
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(P < 0.01), MAH one month prior (P < 0.05), MAT three 
months prior (P < 0.05), and MAH three months prior 
(P < 0.05) (Additional file  1: Table  S3). Then, we con-
structed the RNN6-RNN9 models by incorporating sig-
nificant meteorological factors into the RNN5 model. 
The detailed composition of the nine RNN models 
is listed in Additional file  1: Table  S4. We determined 
the optimal RNN model to be RNN8 for Xuzhou and 
RNN7 for Nantong and Wuxi since they had the small-
est MAPE with the testing set after three training cycles 

(Table 3). Additional file 1: Figure S3 shows the epoch-
error plots of the optimal RNN models after three 
training cycles. The downward trend in the error of the 
models with the training set was no longer significant 
after reaching the set number of epochs, indicating that 
the training epochs were appropriate. Finally, we chose 
the RNN8 model after the first training in Xuzhou and 
the RNN7 model after the second training in Nantong 
and Wuxi (Table 3). PTB cases in 2018 were predicted 
by the optimal RNN model and are listed in Table 1.

Table 3  Alternative recurrent neural network models for the three cities

RNN recurrent neural network, MAPE mean absolute percentage error, MAT monthly average temperature, MAP monthly average atmospheric pressure, MAS monthly 
average wind speed, MAH monthly average relative humidity, MP monthly precipitation, MST monthly sunshine time, 1 1 month prior, 2 2 months prior, 3 3 months 
prior
a   MAPE of the model with the testing set after the first training
b   MAPE of the model with the testing set after the second training
c   MAPE of the model with the testing set after the third training

City Model Learning rate Dimensions 
of hidden 
layer

Number 
of epochs

MAPE (%)a MAPE (%)b MAPE (%)c

Xuzhou RNN1 0.05 3 500 16.14 15.99 16.46

RNN2 0.05 3 500 13.42 13.30 14.41

RNN3 0.2 3 150 13.08 11.95 12.07

RNN4 0.05 3 600 10.33 10.33 10.40

RNN5 0.05 5 600 8.45 8.25 8.54

RNN6 (RNN5 + MAS1) 0.05 3 1000 7.36 7.33 7.33

RNN7 (RNN5 + MAS2 + MST2) 0.05 3 800 6.38 6.31 6.42

RNN8 (RNN5 + MAT3 + MAS3 + MP3 + MST3) 0.05 5 600 4.78 4.89 4.97

RNN9 (RNN5 + MAS1 + MAS2 + MST2 + MAT3 + MAS
3 + MP3 + MST3)

0.05 10 600 5.75 5.40 5.90

Nantong RNN1 0.05 3 500 21.91 21.99 21.78

RNN2 0.2 5 80 16.92 17.81 16.31

RNN3 0.2 3 150 13.82 14.26 13.86

RNN4 0.2 3 150 12.78 12.84 12.80

RNN5 0.2 5 100 11.38 11.44 11.24

RNN6 (RNN5 + MAS1 + MAH1) 0.05 5 1000 9.19 8.82 8.84

RNN7 (RNN5 + MAS2 + MAH2) 0.05 5 1000 8.58 8.26 8.52

RNN8 (RNN5 + MAS3 + MAH3) 0.05 10 800 8.87 8.79 8.69

RNN9 (RNN5 + MAS1 + MAH1 + MAS2 + MAH2 + M
AS3 + MAH3)

0.05 5 800 8.79 9.21 9.19

Wuxi RNN1 0.1 10 150 23.76 23.81 23.77

RNN2 0.05 5 400 19.93 19.54 20.17

RNN3 0.05 10 250 18.23 17.84 18.59

RNN4 0.05 10 400 17.15 17.40 17.31

RNN5 0.05 5 600 14.10 13.93 13.95

RNN6 (RNN5 + MAT1 + MAP1 + MAS1 + MAH1 + M
ST1)

0.05 3 1500 13.01 13.39 13.04

RNN7 (RNN5 + MAS2) 0.1 5 800 12.62 12.36 12.80

RNN8 (RNN5 + MAT3 + MAS3 + MAH3) 0.05 10 1000 12.71 13.06 12.94

RNN9 (RNN5 + MAT1 + MAP1 + MAS1 + MAH1 + MST
1 + MAS2 + MAT3 + MAS3 + MAH3)

0.1 3 1000 12.81 12.80 13.46
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Evaluating the performance of three models
As shown in Table  4, the ARIMAX model is slightly 
superior to the ARIMA and RNN models in Xuzhou, 
significantly superior to the ARIMA and RNN models in 
Nantong, and slightly superior to the ARIMA and signifi-
cantly superior to the RNN models in Wuxi. Generally, 
the ARIMAX model showed the best performance.

Discussion
In this study, we explored the role of meteorological fac-
tors in predicting PTB in three cities of China by con-
structing ARIMA, ARIMAX, and RNN models. The 
prediction ability of the models was improved by adding 
meteorological factors. The ARIMAX model (ARIMA 
with meteorological factors) showed the best perfor-
mance. To our knowledge, this is the first time series 
study to construct different models in different cities to 
explore the role of meteorological factors in predicting 
PTB.

Although the notification rate of TB has declined at an 
annual rate of 3% between 2005 and 2017 [11], approxi-
mately 866  000 new cases were identified in China in 
2018, second only to India [1]. Accurately forecasting 
the future trend of the TB epidemic can help policy-
makers implement effective interventions and distribute 
healthcare resources appropriately. Previous studies have 
explored various models, such as ARIMA [11, 18], X12-
ARIMA [18], and ARIMA-generalized regression neural 
network (GRNN), in predicting TB [11]. However, few 
models have considered seasonal variation characteris-
tics, socioeconomic levels, and meteorological factors 
[12, 19, 20]. Therefore, we divided the study areas into 
three regions according to geographical location and 
economic level and then compared the performance of 

different models with or without adding meteorological 
factors in predicting PTB in the Chinese population.

The ARIMA model, also known as the Box-Jenkins 
model, can analyze various types of time series data and 
is a commonly used model in time series analysis [3–6]. 
Unlike the ARIMA model, which is a univariate time 
series model, the ARIMAX model can deal with multi-
variate time series data. It adds other variables related to 
the target series as input variables to improve the predic-
tion accuracy. A time series study in Guangzhou, China, 
showed that an ARIMA model with imported cases and 
minimum temperature as input variables was superior 
to a single ARIMA model in forecasting dengue trans-
mission [14]. Another time series study in Abidjan, Cote 
d’Ivoire, also indicated that including rainfall as an input 
variable can increase the accuracy of the ARIMA model 
in predicting influenza [21]. However, when we incor-
porated two or more meteorological factors into the 
ARIMA model, its prediction performance did not con-
tinuously increase, which may be attributed to the high 
collinearity between the meteorological factors.

Considering that both ARIMA and ARIMAX are lin-
ear regression models, we also applied the RNN model, 
which has a strong nonlinear fitting ability. It can rec-
ognize the relationship between variables without any 
restrictions and has memory. This means that the RNN 
model uses as input not only current data but also its 
long-term experience. When constructing an RNN 
model, some parameters need to be determined artifi-
cially. In addition, since the initial weights and thresh-
olds are random when training the RNN model, even 
for the same training set, the output of the model with 
the testing set will not be precisely the same. Therefore, 
we trained each RNN model with different parameters 
and compositions three times and compared their per-
formance when using the testing set to determine the 
optimal RNN model. Finally, we found that the predic-
tion performance of the RNN model was improved after 
incorporating meteorological factors.

The possible link between PTB and meteorologi-
cal factors may be attributable to the following reasons. 
First, the temperature can affect the indoor and outdoor 
activities of TB patients and other susceptible people. For 
example, during hot summers and cold winters, people 
tend to stay indoors, which will increase the probability 
of Mycobacterium tuberculosis transmission [22]. Sec-
ond, high wind speeds can dilute the concentration of 
environmental M. tuberculosis, thereby reducing the risk 
of infection. Airflow usually occurs from high-pressure 
areas to low-pressure areas, so the correlation between 
PTB and atmospheric pressure may be related to wind 
speed, but further exploration is needed [23]. Third, high 
relative humidity and abundant precipitation can provide 

Table 4  Evaluation of  the  performance of  the  ARIMA, 
ARIMAX, and  RNN models in  predicting the  monthly 
number of pulmonary tuberculosis cases in the three cities 
in 2018

ARIMA autoregressive integrated moving average, ARIMAX autoregressive 
integrated moving average with exogenous variables, RNN recurrent neural 
network, MAPE mean absolute percentage error, RMSE root mean square error

City Diagnostic indicator Model

ARIMA ARIMAX RNN

Xuzhou MAPE (%) 12.54 11.96 12.36

RMSE 36.194 33.956 34.785

Nantong MAPE (%) 15.57 11.16 14.09

RMSE 34.073 25.884 31.828

Wuxi MAPE (%) 9.70 9.66 12.50

RMSE 19.545 19.026 26.019
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an appropriate living environment for M. tuberculosis 
[23, 24]. Continuous exposure to dry air may decrease 
the production of protective mucus on the respiratory 
tract surface, thereby weakening its resistance to the 
pathogen [25]. Fourth, the large amount of ultraviolet 
light provided by long-term sunshine not only restricts 
the growth of M. tuberculosis but also promotes the syn-
thesis of vitamin D, which can protect people from TB to 
some extent [23].

The association between PTB and meteorological fac-
tors varied across regions [23], which may be partially 
attributed to socioeconomic differences or analytic 
methods. TB is a poverty-related infectious disease [1]. 
Differences in economic level may lead to an uneven dis-
tribution of socioeconomic factors that affect the risk of 
TB, such as food and nutrition security, living condition, 
community environment, and medical resources [20, 
26]. The inconsistency between analytical methods may 
be due to their different requirements for the data. The 
Spearman rank correlation test has no special require-
ments for the distribution of variables and has a wide 
range of applications. However, if there is a long-term 
trend in both time series, the Spearman test will yield a 
biased correlation. The cross-correlation analysis can 
evaluate the correlation between time series at different 
lag times without the influence of long-term trends. In 
addition, the exposure–response relationship between 
TB and meteorological factors might be nonlinear. For 
example, as mentioned earlier, TB may benefit from 
extremely high or extremely low temperatures and rela-
tive humidity. Both the Spearman rank correlation test 
and the cross-correlation analysis can perform linear 
correlation analyses between time series but have limita-
tions in quantifying nonlinear relationships. Moreover, 
considering that most PTB cases are transmitted in dense 
indoor places, the effects of outdoor meteorological fac-
tors may be limited, resulting in inconsistency.

Our study has several limitations. First, the ARIMA, 
ARIMAX, and RNN models are all short-term predic-
tion models; continuous data collection to update the 
models is essential for maintaining their prediction per-
formance. Second, we incorporated all combinations 
of significant meteorological factors into the ARIMA 
model to construct the ARIMAX model, but we only 
incorporated four combinations of meteorological fac-
tors into the RNN model. In addition, the construction 
of the RNN model was based on monthly data, which 
may be insufficient for the RNN to reflect its predic-
tive value. As the performance of the RNN model in 
this study was inferior to that of the ARIMAX model, 
its prediction performance needs further exploration. 
Third, we qualitatively evaluated only the linear corre-
lation between PTB and meteorological factors based 

on monthly data. Considering that this relationship 
may be nonlinear and possess the lag time, we intend to 
apply the distributed lag nonlinear model to quantita-
tively evaluate it based on weekly or daily data in future 
studies. Fourth, most PTB cases are typically transmit-
ted in dense indoor places, while all meteorological 
data in this study were derived from outdoor measure-
ments, and indoor microclimates were not considered.

Conclusions
The prediction performance of both the ARIMA and 
RNN models was improved after incorporating meteor-
ological factors, and the ARIMAX model (ARIMA with 
meteorological factors) had the best performance, indi-
cating a potential link between PTB and meteorological 
factors. Taking meteorological factors into considera-
tion may increase the accuracy of time series models in 
predicting the trend of PTB.
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