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Abstract 

Background:  Dengue fever (DF) is a mosquito-borne infectious disease that has threatened tropical and subtropi‑
cal regions in recent decades. An early and targeted warning of a dengue epidemic is important for vector control. 
Current studies have primarily determined weather conditions to be the main factor for dengue forecasting, thereby 
neglecting that environmental suitability for mosquito breeding is also an important factor, especially in fine-grained 
intra-urban settings. Considering that street-view images are promising for depicting physical environments, this 
study proposes a framework for facilitating fine-grained intra-urban dengue forecasting by integrating the urban 
environments measured from street-view images.

Methods:  The dengue epidemic that occurred in 167 townships of Guangzhou City, China, between 2015 and 2019 
was taken as a study case. First, feature vectors of street-view images acquired inside each township were extracted 
by a pre-trained convolutional neural network, and then aggregated as an environmental feature vector of the town‑
ship. Thus, townships with similar physical settings would exhibit similar environmental features. Second, the environ‑
mental feature vector is combined with commonly used features (e.g., temperature, rainfall, and past case count) as 
inputs to machine-learning models for weekly dengue forecasting.

Results:  The performance of machine-learning forecasting models (i.e., MLP and SVM) integrated with and without 
environmental features were compared. This indicates that models integrating environmental features can identify 
high-risk urban units across the city more precisely than those using common features alone. In addition, the top 
30% of high-risk townships predicted by our proposed methods can capture approximately 50–60% of dengue cases 
across the city.

Conclusions:  Incorporating local environments measured from street view images is effective in facilitating fine-
grained intra-urban dengue forecasting, which is beneficial for conducting spatially precise dengue prevention and 
control.  
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Background
Dengue fever (DF) is an acute infectious disease caused 
by infection with any one of the four serotypes of 

dengue virus (DENV 1–4) transmitted by Aedes mos-
quitoes [1, 2]. In recent years, mosquito-borne infec-
tious diseases have spread in tropical and subtropical 
urban areas and have become a serious global public 
health problem. In the absence of a vaccine, disease 
surveillance and mosquito control are the primary 
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preventive measures for controlling the spread of the 
disease [3]. Against this background, dengue fore-
casting at a fine-grained intra-urban scale is urgently 
required to guide prevention and control.

Existing studies have proven that mosquito dynam-
ics are sensitive to changes in meteorological condi-
tions [4–6]. For instance, temperature and humidity are 
known to influence longevity, feeding behavior, mat-
ing, and oviposition of mosquito vectors, while rainfall 
contributes to the generation of vector breeding sites 
[7, 8]. For these reasons, meteorological factors have 
become the primary independent variables in dengue 
forecasting [3, 9–12]. For instance, Hii et al. developed 
a weather-based dengue forecasting model that warns 
against a dengue epidemic 16  weeks in advance [11]. 
They stated that models using temperature and rain-
fall could be simple, precise, and low-cost tools for 
dengue forecasting and prevention. Sang et  al. found 
that imported dengue cases in the previous month, the 
monthly minimum temperature in the previous month, 
and monthly accumulative precipitation with three-
month lags could anticipate dengue outbreaks one 
month in advance [12].

However, weather is not the only necessary condition 
for mosquito breeding. Some local environments provide 
more ideal conditions for mosquito breeding and sur-
vival than others, even under the same suitable weather 
conditions [13, 14]. Intuitively, dirty roadsides or build-
ing sites would provide more breeding grounds for mos-
quitoes than well-maintained places. Existing studies 
have also found that urban villages with poor sanitation, 
overcrowded population and buildings, and pot-holed 
roads, usually provide high environmental suitability for 
mosquito vectors [14]. Some street-view elements also 
function as potential mosquito breeding grounds, such 
as dustbins, water, flowerpots, trucks and sand (indi-
cating that there may be building sites around) [13, 15]. 
Theoretically, integrating the physical environment as 
an important factor, together with other commonly used 
factors, would improve dengue forecasting performance, 
especially in fine-grained intra-urban settings.

How to quantitatively depict urban physical environ-
ments is a key question. Traditionally, the quality of 
physical environments in urban areas has been assessed 
through questionnaire surveys [16] and field audits [17, 
18]. Such data acquisition methods are expensive and 
time-consuming. The collected datasets are usually 
small and biased, as they are influenced by the attitudes, 
skills, or other subjective factors of the participants. 
The easy availability and widespread use of remotely 
sensed imagery simplifies the measurement of the over-
all greenness of a given area using the normalized dif-
ference vegetation index (NDVI), which is much more 

objective, efficient, and economical [19–21]. However, 
NDVI only depicts a single perspective (i.e., green-
ness) of the urban environment, and the overhead-view 
greenery measured by NDVI often differs from the eye-
level greenery perceived by people, as NDVI may fail to 
detect lawns or shrubs under tree canopies, green walls, 
or vegetation covered by bridges [22, 23].

In recent years, emerging street views, which are elec-
tronic maps based on actual scenery, provide free and 
rich data sources for assessing the human-perceived 
urban landscape [24]. The rapid development of deep 
learning techniques has also greatly promoted the value 
and applicability of the data [25–28]. Several large inter-
net companies, such as Google, Baidu, Tencent, and 
Microsoft, have launched online street-view services. 
Street-view images of various locations in cities can be 
conveniently retrieved and downloaded through applica-
tion programming interfaces (APIs) of these online map 
service providers. Using street-view images, a wide range 
of urban studies have been conducted including 3D city 
reconstruction [29], urban scene recognition [25, 26, 30, 
31], route selection [32], and urban function recogni-
tion [33]. In particular, as visual perception of landscape 
serves as a basis for urban planning and quality of life, 
several studies have evaluated landscape qualities [34–37] 
and human perceptions of urban appearance [38–40], 
while investigating their associations with socioeconomic 
factors [41–43], physical activity [44, 45], street accessi-
bility [33], and other outcomes. More importantly, poor 
street quality and some specific environmental elements 
(e.g., trees, plants, dustbins, flowerpots, sand, and water) 
that imply potential mosquito breeding grounds can be 
conveniently measured and identified from street-view 
images [13, 37]. A recent study also demonstrated that 
street-view images can estimate the dengue incidence 
rate at various locations [46, 47].

Therefore, this study proposes a novel strategy to inte-
grate urban environments measured from street-view 
images into fine-grained intra-urban dengue forecast-
ing processes. Specifically, a pre-trained PSPNet model 
(trained on the image segmentation dataset ADE20K) 
was applied to extract the outdoor scene features from 
the street-view images. Feature vectors of images col-
lected from the same unit were then averaged as an 
environmental feature vector for the unit. Then, the 
environmental feature vectors were combined with the 
commonly used features (e.g., temperature, rainfall, past 
cases) to enhance the supervised learning-based dengue 
forecasting models, such as the multilayer perceptron 
(MLP) and support vector machine (SVM) used in our 
study. The effectiveness of the proposed dengue forecast-
ing approach was tested on the most threatened Chinese 
city, Guangzhou, at the township level.
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Methods
Study area and data
Guangzhou is a first-tier city located in South China 
(Fig. 1), having an area of 7434 km2 and comprising over 
15 million permanent residents until the end of 2019. The 
climate of Guangzhou is humid and subtropical, with 
high temperatures and humidity in summer and com-
paratively mild and dry weather in winter. The suitable 
climate, large floating population, and close proximity to 
Southeast Asia where dengue has been hyperendemic for 
decades, renders Guangzhou the most threatened city in 
China [48–50].

As shown in Fig.  1, the 167 townships of Guangzhou 
were used as urban units in this study for fine-grained 
intra-urban dengue predictions. According to statistics, 
approximately 20% of townships have areas of less than 
2  km2, and 37% have less than 5  km2. The prediction 
units in this study are much smaller than those in the 
existing studies.

Dengue case data
Guangzhou experienced its worst dengue epidemic in 
2014, with an incidence of 37  445 locally acquired den-
gue cases exceeding the historical average by two orders 
of magnitude [49]. Since 2015, Guangdong Province and 
Guangzhou City have spared no effort to prevent and 

control dengue epidemics, reducing dengue cases in 
recent years. To establish prediction models under the 
current control policy, this study used dengue case data 
for Guangzhou City between January 1, 2015, and Sep-
tember 22, 2019, provided by the Guangdong Center 
for Disease Control and Prevention (Guangdong CDC). 
The attributes of each anonymous case included resi-
dential address, onset date, and type (imported or local). 
Residential addresses of the cases were converted to geo-
graphic coordinates using the geocoding API of Baidu 
Maps [51]. Figure 2 shows the spatial distribution of den-
gue cases in Guangzhou City during the study period.

We then counted the dengue cases inside each town-
ship by week based on the onset date. Figure 3 presents 
the weekly imported and local case counts of the city 
during the study period. According to Fig. 3, we identi-
fied July 1 to November 30 as the concentrated outbreak 
period, when the number of dengue cases was apparently 
above normal.

Meteorological data
The daily mean temperature and daily rainfall recorded 
by nearly 300 weather stations in Guangzhou dur-
ing the study period were obtained from the Guang-
dong Meteorological Bureau. The station-based data 
were spatially interpolated to a fine resolution using 

Fig. 1  Study area. All 167 townships in Guangzhou City, China
Fig. 2  Spatial distribution of dengue cases in Guangzhou City, China 
between January 2015 and September 2019
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the ordinary Kriging method, and then averaged (for 
temperature) or summed (for rainfall) at the township 
level. Figures 4A, B illustrate the weekly mean temper-
ature and cumulative rainfall of one arbitrarily selected 
township during the study period. Figures 4C, D show 
the weekly mean temperature and cumulative rainfall 
of all townships within the city during an arbitrarily 
selected week (i.e., September 5–11, 2016).

Population data
The population data of Guangzhou used in this study 
were obtained from the well-known open data source, 
WorldPop [52, 53]. However, WorldPop provides 
yearly population datasets from 2015 to 2019, which 
cannot meet the time interval (weekly) of dengue 
prediction. Considering that Guangzhou is a well-
developed city and its spatial population distribution 
pattern has not changed substantially in recent years, 
we used the population dataset of 2017 to represent 
the population from 2015 to 2019.

As shown in Fig.  5, the 100-m gridded population 
data for 2017 were aggregated at the township level. A 
township with a larger population implies more hosts 
for the mosquito vectors and the incidence rate is 
more likely to be higher.

Street view images
The street-view images used in this study were obtained 
from Baidu Maps using the Web Service API [54]. The 
corresponding street-view image at the location can 

be obtained using the coordinates (i.e., longitude and 
latitude) and setting the field of view (i.e., the param-
eter “fov”), horizontal view angle (i.e., the parameter 
“heading”), image size (i.e., the parameters “width” and 
“height”), and developer key (i.e., the parameter “ak”).

The URL format for requesting an image under spe-
cific parameters is http://​api.​map.​baidu.​com/​panor​
ama/​v2?​ak=​Repla​ceYou​rDeve​loper​Key&​width=​400&​
height=​300&​locat​ion=​113.​25529​,23.​11419​&​fov=​90&​
headi​ng=0. Note that one needs to apply and use her/his 
developer key to open the example URL.

As shown in Fig. 6, by setting the parameter “heading” 
as 0, 90, 180, and 270 degree, we can obtain four street-
view images of a given location. Those images compre-
hensively depict the physical environment of the location.

Street-view images were acquired at a distance inter-
val of 150 m along OpenStreetMap (OSM) [55] streets 
within Guangzhou City. Considering that street-view 
images collected in areas with few or no population 
are useless for depicting human living environments, 
we only retained images collected from spatial units 
(i.e., 100-m grids) with a population of no less than 10 
(please refer to Fig. 5A). Thus, four street-view images 
can be acquired at each location (if the request is suc-
cessful), resulting in 112 447 total images (512 × 512 
pixels) across the city.

Method framework and steps
The framework of our methodology is illustrated in Fig. 7. 
To facilitate fine-grained intra-urban dengue forecasting, 
environmental features were extracted from street-view 

Fig. 3  Weekly dengue case count of Guangzhou City from January 2015 to September 2019

http://api.map.baidu.com/panorama/v2?ak=ReplaceYourDeveloperKey&width=400&height=300&location=113.25529,23.11419&fov=90&heading=0
http://api.map.baidu.com/panorama/v2?ak=ReplaceYourDeveloperKey&width=400&height=300&location=113.25529,23.11419&fov=90&heading=0
http://api.map.baidu.com/panorama/v2?ak=ReplaceYourDeveloperKey&width=400&height=300&location=113.25529,23.11419&fov=90&heading=0
http://api.map.baidu.com/panorama/v2?ak=ReplaceYourDeveloperKey&width=400&height=300&location=113.25529,23.11419&fov=90&heading=0
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Fig. 4  Meteorological data of Guangzhou City. A Weekly mean temperature and B weekly cumulative rainfall of a township from January 2015 
to September 2019. C Weekly mean temperature and D weekly cumulative rainfall of all townships within Guangzhou City during the week of 
September 12–18, 2016
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images and then combined with the commonly used fea-
tures (i.e., past cases, temperature, rainfall, and popula-
tion) as inputs to the forecasting models (i.e., MLP and 
SVM). Models for L-week (L = 1, 2,…, 8) ahead forecast-
ing were separately trained and applied.

The processes of environmental feature extraction, 
common feature extraction, forecasting model construc-
tion, and forecasting performance evaluation are intro-
duced in detail in the following sections.

Environmental feature extraction
As shown in Fig. 8, this study applied a pre-trained deep 
convolutional neural network called PSPNet [56] to 
extract the feature vector of each street-view image. The 
environmental features of each urban unit were then 
obtained by aggregating the image feature vectors col-
lected within the unit.

The PSPNet provides a superior framework for pixel-
level scene-parsing tasks (i.e., labeling the category of all 
pixels within the image), and received the champion of 
the ImageNet Scene Parsing Challenge in 2016 [57]. As 
we mainly focused on outdoor scenes, this study used a 

PSPNet model pre-trained on the ADE20K dataset [57], 
which included numerous images with 150 indoor and 
outdoor scene categories. Feeding a street-view image 
into the pre-trained PSPNet, each image pixel can be 
labeled with one of the 150 scene categories. Based on the 
pre-trained model, we calculated the pixel proportions of 
the 64 selected outdoor scenes for each image [26]; thus, 
a 64-dimensional feature vector could be constructed to 
describe the image.

As a demonstration, Fig.  9 shows the cosine similar-
ity matrix of four street-view images measured by their 
64-dimensional feature vectors. We can see that street-
view images with more similar scene elements would 
have more similar feature vectors [such as images (A) and 
(B) and images (C) and (D)], indicating that the extracted 
feature vectors can successfully depict physical environ-
ments at various places.

Finally, feature vectors of street-view images col-
lected within the same urban unit were averaged to be a 
64-dimension environmental feature vector to represent 
the physical environment of the unit (i.e., township in our 
study). Thus, urban units with similar physical settings 

Fig. 5  Population data (2017) of Guangzhou City. A 100-m gridded population counts provided by the WorldPop. B Township-based population 
aggregated from the 100 m-grid population counts
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would have similar environmental features. We averaged 
the feature vectors of all inside images to represent the 
entire township because most of the townships are very 
small, and the population in a few larger townships is 
concentrated. If the spatial units were very large with a 
dispersed population distribution, the averaged features 
would have less representativeness.

Common feature extraction
This study used epidemical, meteorological, and soci-
odemographic variables as common features, which 
have been widely used and proven as important factors 
for dengue forecasting in previous studies [3, 9–12]. As 
shown in Table 1, 11 common features were extracted for 
each urban unit (i.e., township) from past cases (including 

Fig. 6  Street-view images acquired at a location with heading degrees of 0, 90, 180, and 270

Fig. 7  Framework of the proposed approach
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imported and local cases), mean temperature, cumulative 
rainfall, and population. Epidemical and meteorological 
factors are dynamic features with time lags of up to four 
weeks, while the population factor is a static feature.

Forecasting model construction
This study used SVM and MLP as basic dengue forecast-
ing models, which have been widely used in the existing 
literature [1]. Specifically, a linear kernel was used in the 
SVM-based regression model. For the MLP-based regres-
sion model, we used one hidden layer of 100 neurons, 
applied “tanh” as the activation function, and set the 
learning rate to 0.001.

The SVM/MLP models were trained separately for 
1–8 weeks ahead of dengue forecasting. The input of each 
model consisted of a 64-dimensional environmental fea-
ture vector and an 11-dimensional common feature vector. 
Each feature vector dimension was normalized to a range 
between zero and one using the min–max feature scal-
ing method. As for the output of the model, because strict 
intervention measures were taken during the study period, 
the number of dengue cases in Guangzhou was very small 
(Fig. 3), especially at the township level, making it difficult 
to directly predict the local case count of each township in 
following weeks. To alleviate the data sparsity problem, we 
applied an exponential smoothing technique to the time 
series of weekly local case counts in each township and 
used smoothed value as a proxy for the real case count and 
the output of the model. Denoting the raw time series as 
{ xt }, the smoothed time series { st } is obtained using the fol-
lowing formulas:

(1)s0 = x0,

(2)st = αsxt + (1− αs)st−1, t > 0,

where αs is the smoothing factor in the range [0, 1]. Set-
ting αs as 0.25, we derived the smoothed dengue case 
count for each township in each week. Taking a ran-
domly selected township as an example, Fig. 10 displays 
the original time series of the weekly local case count and 
smoothed result. The data-smoothing scheme can help 
retain the latent temporal patterns of dengue epidemics, 
and mitigate the influence of data sparseness and uncer-
tainty caused by human intervention.

Performance evaluation
Dengue forecasting conducted at a large spatial scale (e.g., 
country, state/province, and city) usually aims to provide 
an early warning. In contrast, a fine-grained intra-urban 
forecast focuses more on identifying regions with relatively 
higher risk in the near future, facilitating precise preven-
tion and control despite limited resources. Therefore, in 
addition to measuring the Pearson correlation coefficient 
of the predicted and observed case counts, we also defined 
a “hit rate” metric to assess the forecasting performance 
from a spatial perspective by evaluating the ability of the 
model to identify high-risk urban units across the city.

Specifically, the hit rate metric calculates the proportion 
of dengue cases captured by the top m % of the predicted 
high-risk units during week t:

where Nm,t represents the number of observed cases 
within the top m % predicted high-risk units (i.e., rank-
ing all units from high to low according to their pre-
dicted case counts), and Nt denotes the total number of 
observed cases within the city. A high hit rate indicates 
that units with higher risk during the week have been 
well identified by the forecasting model.

(3)Hit ratet =
Nm,t

Nt

,

Fig. 8  Extracting the environmental feature vector of an urban unit from street-view images using the pre-trained PSPNet model
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Results
Using Guangzhou as a case study, data collected from 
January 26, 2015 to December 31, 2018 (a total of 167 
townships × 205  weeks of samples) were used for train-
ing, and data collected from January 1 to September 22, 
2019 (a total of 167 townships × 38  weeks of samples) 
were used for evaluation.

In this section, we first demonstrate the forecasting 
results from temporal and spatial perspectives, and then 
compare and evaluate the performance of the proposed 
approach quantitatively using the Pearson correlation 
coefficient and hit rate metric.

Fig. 9  Cosine similarity matrix of four street-view images measured by their feature vectors extracted from the pre-trained PSPNet model

Table 1  Common features extracted for each urban unit

No Category Feature

1 Epidemical factor (dynamic) Case count of the (t − 1)-th week

2 Case count of the (t − 2)-th week

3 Case count of the (t − 3)-th week

4 Case count of the (t− 4)-th week

5 Case count of past four weeks

6 Meteorological factor (dynamic) Mean temperature of the (t − 1)-th week

7 Mean temperature of the (t − 2)-th week

8 Mean temperature of the (t − 3)-th week

9 Mean temperature of the (t − 4)-th week

10 Cumulative rainfall of past four weeks

11 Sociodemographic factor (static) Population
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Demonstrations of forecasting results from temporal 
and spatial perspectives
From a temporal perspective, Fig.  11 presents the 
(smoothed) dengue case count of three townships in 
Guangzhou during the validation period predicted by the 
1-week ahead MLP model using both common and envi-
ronmental features. We can see that the predicted case 
count at the township level was generally parallel to the 
temporal trend of the actual dengue epidemic, which can 
serve as an early warning for preparing prevention and 
control measures.

From a spatial perspective, Fig.  12 demonstrates the 
(smoothed) case counts of all townships across the city 
during two different weeks (i.e., the 239th week and the 
246th week) predicted by the 1-week ahead MLP model 
using both common and environmental features. In the 
239th week, the top 30% and 50% high-risk townships 
(i.e., the top 50 and 84 high-risk townships) captured 
75.0% and 82.1% of the actual dengue cases, respectively. 
In the 246th week, the top 30% and 50% high-risk town-
ships captured 62.5% and 78.4% of the actual dengue 
cases, respectively. High-risk townships can be gener-
ally identified by the proposed approach, which is poten-
tially useful in guiding dengue prevention and control in 
practice.

Performance comparison and evaluation
First, we calculated the Pearson correlation coefficients 
(Pearson’s r) of the predicted and observed dengue case 
counts. Figure  13 shows that the Pearson’s r gradually 
decreased with the increase in the forecast window, and 
the MLP models with combined environmental fea-
tures outperformed those with only common features, 
thereby indicating the usefulness of the environmental 
features in dengue forecasting.

Second, we used the hit rate metric to measure the 
ability of the models to identify high-risk townships 
across the city. Figures 14, 15 show the average hit rates 
during the defined outbreak period. We can see that the 
top 30% of the predicted high-risk townships captured 
approximately 50–60% of the dengue cases across the 
city. Such risk maps can help guide precise dengue pre-
vention and control in urban spaces. In addition, the 
results indicated that models using both common and 
environmental features as inputs behaved better than 
those using only common features, thereby further 
proving that incorporating urban environments meas-
ured from street-view images effectively facilitates den-
gue forecasting.

Discussion
As a mosquito-borne infectious disease, the incidence 
rate of DF is highly related to local meteorological and 
environmental conditions. As current studies have 
mainly been conducted at large spatial scales, only mete-
orological variables have been extensively used for den-
gue forecasting. However, environmental suitability is 
also a vital factor in the dengue incidence, especially at 
a fine-grained intra-urban scale. Some local areas (e.g., 
dustbins, flowerpots, building sites, etc.) typically provide 
more ideal conditions for mosquito breeding and survival 
than others, even under the same suitable weather con-
ditions. Therefore, combining local environments and 
meteorological factors can theoretically help enhance 
fine-grained intra-urban dengue forecasting.

Historically, measuring urban physical environments 
has been laborious work, while the emergence of street-
view images and the development of deep learning 
techniques enable automatic feature extraction of local 
environments across a city. Taking advantage of the 

Fig. 10  Time series of weekly local case count before and after data-smoothing
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promising data source and advanced techniques, this 
study proposes a framework for facilitating fine-grained 
intra-urban dengue forecasting by incorporating local 
environments measured from street-view images. First, 

a pre-trained PSPNet model was applied to extract 
the outdoor scene features of the street-view images, 
and the feature vectors of images collected from the 
same unit were averaged as unit environmental feature 

Fig. 11  Temporal distribution of predicted case counts of three townships
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Fig. 12  Predicted (smoothed) case counts of all townships during two different weeks. The smoothed case counts were predicted by the 1-week 
ahead MLP-based model using both common and environmental features

Fig. 13  Forecasting performance evaluated by Pearson correlation coefficient. a MLP-based forecasting. b SVM-based forecasting
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vectors. The environmental feature vectors were then 
combined with the commonly used features (e.g., tem-
perature, rainfall, past cases) to enhance the supervised 
learning-based dengue forecasting models. The case 
study conducted at the township level for dengue fore-
casting in Guangzhou City indicated that models using 
both common and environmental features behaved bet-
ter than those using common features alone, proving 
that incorporating urban environments measured from 

street-view images can help facilitate dengue forecast-
ing in small-scale urban areas.

We summarized the highlights of this study from the 
following two perspectives.

1.	 Most existing dengue forecasting studies have been 
conducted at large spatial scales such as the national, 
sub-national, and city levels, whereas this study 
focused on fine-grained intra-urban areas, which can 

Fig. 14  Forecasting performance of MLP-based models evaluated by the hit rate metric

Fig. 15  Forecasting performance of SVM-based models evaluated by the hit rate metric
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help identify high-risk regions for precise dengue 
prevention and control.

2.	 Considering that local environments significantly 
influence vector suitability, we introduced emerg-
ing street-view images and advanced deep learning 
techniques to extract environmental features, which 
can help enhance dengue forecasting at small spatial 
scales. To the best of our knowledge, this is the first 
attempt to apply this promising data source to den-
gue forecasting.

Our research has some limitations that can be 
addressed in future work. First, the performance 
improvements made by environmental features were not 
significant in our study. One important reason is that the 
dengue case data during the study period are too sparse 
(especially at the township level), rendering forecast-
ing very difficult. However, considering that both the 
hit rate metric and Pearson’s correlation coefficient are 
improved for all forecasting windows, we still conclude 
that the environmental features are effective in enhanc-
ing fine-grained dengue forecasting. Second, it is difficult 
to obtain dynamic population and street-view images 
at one-week intervals. Considering that Guangzhou is 
a well-developed city, we chose to use the population 
data of 2017, representing the population of 2015–2019, 
and the most recent street-view image data provided 
by Baidu API. Third, the dengue case data used in this 
study are dependent on notifiable data, while asympto-
matic cases and immunity levels were not considered. 
Finally, because street-view vehicles can only scan hori-
zontal views along linear public roads, street-view image 
data are still inadequate for depicting the overall condi-
tions of a region. Therefore, we suggest that the bird-eye 
view images collected by drones (if available) can be used 
together with street-view images to better depict the 
environments of the regions.

Conclusions
Considering that emerging street-view images are prom-
ising data for depicting physical environments, this study 
proposed a fine-grained intra-urban dengue forecasting 
approach by integrating physical environments meas-
ured from street-view images. The results show that 
models integrated with environmental features behaved 
better than those using traditional features alone, prov-
ing that our proposed framework effectively incorporates 
environmental factors and facilitates intra-urban dengue 
forecasting at small spatial scales.
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