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Abstract 

Background:  Influenza B virus can cause epidemics with high pathogenicity, so it poses a serious threat to public 
health. A feature representation algorithm is proposed in this paper to identify the pathogenicity phenotype of influ-
enza B virus.

Methods:  The dataset included all 11 influenza virus proteins encoded in eight genome segments of 1724 strains. 
Two types of features were hierarchically used to build the prediction model. Amino acid features were directly deliv-
ered from 67 feature descriptors and input into the random forest classifier to output informative features about the 
class label and probabilistic prediction. The sequential forward search strategy was used to optimize the informative 
features. The final features for each strain had low dimensions and included knowledge from different perspectives, 
which were used to build the machine learning model for pathogenicity identification.

Results:  The 40 signature positions were achieved by entropy screening. Mutations at position 135 of the hemagglu-
tinin protein had the highest entropy value (1.06). After the informative features were directly generated from the 67 
random forest models, the dimensions for class and probabilistic features were optimized as 4 and 3, respectively. The 
optimal class features had a maximum accuracy of 94.2% and a maximum Matthews correlation coefficient of 88.4%, 
while the optimal probabilistic features had a maximum accuracy of 94.1% and a maximum Matthews correlation 
coefficient of 88.2%. The optimized features outperformed the original informative features and amino acid features 
from individual descriptors. The sequential forward search strategy had better performance than the classical ensem-
ble method.

Conclusions:  The optimized informative features had the best performance and were used to build a predictive 
model so as to identify the phenotype of influenza B virus with high pathogenicity and provide early risk warning for 
disease control.
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Background
Influenza B virus (IBV) belongs to the Orthomyxoviridae 
family, and its genome is composed of eight negative-
strand RNA of different lengths [1, 2]. As a pathogen 
that can cause human respiratory diseases, IBV was first 

isolated from clinical samples in 1940 [3]. According to 
the antigen characteristics of the hemagglutinin protein, 
two lineages of IBV were reported: Victoria-like virus and 
Yamagata-like virus [4]. IBV can cause local outbreaks or 
seasonal epidemics with a high mortality rate in children 
and adolescents, so it poses a serious threat to public 
health [5–10].

There are at least 11 viral proteins encoded in the 
genome of IBV: polymerase basic protein 2 (PB2), pol-
ymerase basic protein 1 (PB1), polymerase acid pro-
tein (PA), hemagglutinin (HA), nucleoprotein (NP), 
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neuraminidase (NA), glycoprotein (NB), matrix pro-
tein (M), matrix protein 2 (BM2), nonstructural pro-
tein 1 (NS1), and nuclear export protein (NEP) [11]. 
The pathogenicity of influenza viruses to mammals 
is determined by amino acid mutation. For example, 
mutations in PB2 increase the virulence for influenza 
A virus isolated from avian species and swine [12, 13]. 
The screening of the key amino acid mutation is cru-
cial for understanding the pathogenicity of IBV, which 
can be used to evaluate its virulence and predict even 
pandemic risk. Although several mutations are related 
to viral pathogenicity, comprehensive screening has not 
been achieved [14–17]. System identification of amino 
acid mutations is expected with the increase of genome 
data for IBV [18–22].

The pathogenicity of any influenza virus is an impor-
tant indicator for pandemic risk. Computational tools in 
the field of machine learning have been used to identify 
phenotype of biological data [23, 24]. Machine learning 
techniques gain knowledge from viral protein sequences 
and represent viruses by optimal features [25]. A model 
with good performance evaluates the pathogenicity of 
IBV and predicts the ability of transmission. With the 
increase of genome data in the public database, machine 
learning methods are ideal tools for phenotype identifica-
tion of IBVs [26].

To capture the key information of mutant amino acids 
of viral proteins, different feature encoding algorithms 
from multiple perspectives are considered in this paper, 
such as compositional information, position-specific 
information, and physicochemical properties. The amino 
acid composition (AAC) is a simple feature descrip-
tor for sequence analysis [27]. Parallel correlation-based 
pseudo-amino-acid composition (PC-PseAAC) measures 
the parallel correlation of any two amino acids in the sig-
nature positions [28]. The standard amino acid alphabet 
is classified and grouped based on five physicochemi-
cal properties: polarity, secondary structure, molecular 
volume, codon diversity, and electrostatic charge [29]. 
The orthotropic one-hot and overlapping properties can 
be used to describe amino acids [30]. Different types of 
information for amino acid features can be used to con-
struct a machine learning model with good performance.

In this paper, we propose a feature representation algo-
rithm to identify the pathogenicity of IBV. Informative 
features about the class label or probabilistic prediction 
were learned from 67 random forest (RF) classifiers. A 
final predictor was proposed with the use of optimized 
informative features and performed impressively. Thus, 
we posit that the proposed method is a powerful tool for 
pathogenicity identification of IBVs at a large scale, which 
can aid in warning about transmission risk as well as ben-
efit public health.

Methods
Data set
To describe the transmission dynamic of IBV, surveil-
lance data from 1997 to 2020 were collected from the 
United States Centers for Disease Control and Preven-
tion (https://​www.​cdc.​gov/​flu/​weekly/​fluvi​ewint​eract​ive.​
htm). Because of the impact of COVID-19, sparse data 
from the 2020 to 2021 and 2021 to 2022 influenza sea-
sons were omitted. Regarding pathogenicity, the percent-
age of IBV in all positive samples of influenza virus per 
season was calculated. As the number of positive tests 
changes every year, the positive test rate was used to 
reflect the pathogenicity.

To construct a machine learning model, protein data 
of IBVs isolated from the US were downloaded from the 
GISAID public database (http://​platf​orm.​gisaid.​org/​epi3/​
front​end) [31, 32]. To reduce the redundancy of sequence 
similarity and cover the integrity of the viral genome, the 
raw data were processed before modeling [18]. The clus-
tering algorithm was used to reduce the redundancy of 
viral sequences. Only strains with the full length of viral 
proteins were considered. Ambiguous amino acid resi-
dues were checked and edited carefully. Strains with low-
quality sequencing were also removed. The final dataset 
included all 11 influenza virus proteins (PB2, PB1, PA, 
HA, NP, NA, NB, M1, BM2, NS1, and NEP) of 1724 
strains (see Additional file 1).

Signature amino acid position
Viral proteins have important biological functions and 
play key roles during infection and transmission. The 
total length of the 11 viral proteins was 4708 amino 
acids. Although fast mutation rates have been observed, 
most amino acid residues in the 11 viral proteins were 
conserved. Signature positions were screened to reduce 
the computing complexity. Entropies in each position of 
the 11 viral proteins were calculated and measured with 
Ei = −

∑21
j=1 Pi,j log

(

Pi,j
)

 , where Pi,j is the frequency of 
amino acid j at position i . Deletion or insertion was also 
considered. High values reflect frequent mutations in any 
given position [33].

Amino acid composition
To identify the pathogenicity of IBV using a machine 
learning method, the features for amino acids in signa-
ture positions should be encoded as input. Six different 
encoding algorithms from multiple perspectives, includ-
ing compositional information, position-specific infor-
mation, and physicochemical properties, were used in 
this paper. The AAC is simple descriptor for the viral pro-
tein sequence of IBV [27]. The AAC method calculates 
the frequency of an amino acid in signature positions. 
The gap (deletion or insertion) was also considered. A 
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21-dimensional feature vector was used to represent each 
strain.

PC‑PseAAC​
The PC-PseAAC is an updated AAC that calculates the 
parallel correlation of any two amino acids in a protein or 
peptide sequence [28]. For each strain used in this paper, 
the PC-PseAAC feature vector is measured as

where

Here, u is an integer that changes with � ; fvu 
(1 ≤ u ≤ 21) represents the normalized appearance fre-
quency of the 20 amino acids and a gap for each strain; λ 
represents the highest tier of the correlation along signa-
ture positions; θj (j = 1, 2, . . . , �) is the correlation func-
tion that measures the j-tier sequence-order correlation 
between all the j-th most contiguous residues along sig-
nature positions [18].

G‑gap dipeptide composition
Th G-gap dipeptide composition (GGAP) measures the 
dipeptide composition coupled with local order infor-
mation of any two interval residues within protein 
sequences. GGAP is represented as

where fvgi  is the frequency of the i-th ( i = 1,2, …, 441) 
g-gap dipeptide in signature positions [18]. The dimen-
sion of the GGAP feature vector is 21 × 21 = 441. Dele-
tion or insertion was also computed.

Twenty‑bit features
In addition to methods based on the frequency of the 
amino acid, features about position-specific informa-
tion and physicochemical properties were also used. 
The standard 20 amino acids were grouped according to 
the five physicochemical properties: polarity, secondary 
structure, molecular volume, codon diversity, and elec-
trostatic charge [29]. For each physicochemical property, 
the 20 amino acids were clustered into three groups, and 
deletion/insertion was regarded as the fourth group [18]. 
A total of 20 groups for each alphabet in the signature 
positions were achieved. Each residue was encoded as a 
20-bit vector comprising 0/1 elements, where the posi-
tion of the bit was set to 1 if the residue belonged to the 
corresponding group, and 0 otherwise. The signature 

PC − PseAAC =
[

fv1, . . . , fv21, fv21+1, . . . , fv20+�

]T
,
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positions in this paper were screened with the method 
of entropy. The top k residues with the highest values of 
entropy were selected, and the dimension of the feature 
vector was 20 × k [18].

Twenty‑one‑bit features
For position-specific information of signature positions, 
each alphabet was encoded into a 21-bit 0/1 vector as in 
one-hot encoding, for example, Ala by 1,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0 or deletion/Insertion by 0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,1). Therefore, the top k residues 
were encoded with a 21 × k dimensional feature vector 
[18].

Overlapping property features
Each amino acid was classified into 10 groups based on 
overlapping physicochemical properties [30]. The 10 
physicochemical properties and their corresponding 
amino acid groups were as follows: Aromatic = {F, Y, W, 
H}, Negative = {D, E}, Positive = {K, H, R}, Polar = {N, Q, 
S, D, E, C, T, K, R, H, Y, W}, Hydrophobic = {A, G, C, T, 
I, V, L, K, H, F, Y, W, M}, Aliphatic = {I, V, L}, Tiny = {A, 
S, G, C}, Charged = {K, H, R, D, E}, Small = {P, N, D, T, C, 
A, G, S, V}, and Proline = {A, S, G, C}. Deletion/Insertion 
was regarded as the 11th group. The alphabet in the sig-
nature positions was then encoded by a 11-dimensional 
0/1 vector. The position of the vector was set to 1 if the 
residue belonged to the physicochemical property and 0 
otherwise. In this paper, the top k residues were encoded 
with a 11 × k feature vector [18].

RF predictor
The RF algorithm was used to output the informative fea-
tures about the class label and probabilistic prediction 
[18]. R 3.5.0 (Lucent Technologies, Jasmine Mountain, 
USA) was used to perform the RF algorithm, and the tree 
number was set to 500 by default [34].

Framework for pathogenicity identification
The framework for pathogenicity identification of IBV is 
shown in Fig. 1. Two types of features were hierarchically 
used to represent IBV: amino acid features and informa-
tive features [27]. Amino acid features were directly deliv-
ered from 67 feature descriptors and were input into the 
RF predictors. The informative features about the class 
label and probabilistic prediction were then generated 
and further optimized. The optimal subset of informative 
features to represent each strain had low dimensions and 
included knowledge from different perspectives, which 
were expected to improve the performance of the identi-
fication model.

The six amino acid encoding algorithms were AAC, 
PC-PseAAC, GGAP, 20-Bit features (BIT20), 21-bit 



Page 4 of 13Kou et al. Infectious Diseases of Poverty           (2022) 11:50 

features (BIT21), and overlapping property features 
(OLP). The variate k is the common parameter for BIT20, 
BIT21, and OLP, and controls the dimension of amino 
acid features. k varied from 4 to 40 by a step size of 4. 
The maximum was set to 40 because there were 40 signa-
ture positions. The 67 feature descriptors under different 
parameters were produced (Table 1). The class and prob-
abilistic features were then provided by each RF model. 
The class feature is the predicted class label. The positive 
samples were marked as 1, and the negative samples were 
marked as 0. The probabilistic feature is the probability 
of the positive label. For each type of informative feature, 
the 67 values were concatenated into a new vector. Each 
strain was then represented by two informative features.

In this paper, two 67-dimensional features were fur-
ther optimized to reduce computational complexity and 
increase performance. The minimum-redundancy max-
imum-relevancy (mRMR) algorithm was used to rank 

informative features by importance scores [35]. Moreo-
ver, the sequential forward search (SFS) strategy was 
used to increase the informative features from the ranked 
list one by one. The subset with the best performance 
was considered to have the optimal features and was 

proposed to construct the final model for pathogenicity 
identification [27].

Performance evaluation
Four popular metrics for performance evaluation, Sen-
sitivity (SN), Specificity (SP), Accuracy (ACC), and 
Matthews correlation coefficient (MCC), were used as 
follows:

where TP indicates the correct number of strains with 
the phenotype of high pathogenicity; TN represents the 
correct number of strains with the phenotype of low 
pathogenicity; FP indicates the wrong number of strains 
with the phenotype of low pathogenicity; and FN is the 

SN =
TP

TP + FN
× 100%

SP =
TN

TN + FP
× 100%

ACC =
TP + TN

TP + TN + FP + FN
× 100%

MCC =
TP × TN + FP × FN

√
(TP + FN )(TP + FP)(TN + FN )(TN + FP)

× 100%

Fig. 1  Flowchart of pathogenicity identification of IBV. The 40 signature positions based on entropy were first screened after data were 
downloaded and cleaned. Six encoding methods of amino acids with changeable parameters were used to extract features. Then, 67 descriptors 
were proposed, and two types of informative outputs from the RF method were obtained to be further optimized with the mRMR algorithm and 
the SFS strategy. Each strain was finally represented by two optimized informative features with the low dimension ‘class’ and ‘prob.’ These optimal 
subsets were used to construct predictive models
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wrong number of strains with the phenotype of high 
pathogenicity.

The receiver operating characteristic (ROC) curve 
was also used to evaluate the overall performance [36]. 
The curve is generated by plotting the true positive rate 
(TPR) against the false positive rate (FPR) under different 
classification thresholds. The area under the ROC curve 
(AUC) was used to evaluate the predictive performance. 
A larger AUC value suggests that the model achieves a 
better performance [26].

Results
Pathogenicity of IBV
To summarize the transmission dynamic of IBV, US 
surveillance data from 1997 to 2020 were collected. 
The percentage of IBV in all positive samples of human 
influenza virus was calculated for each influenza sea-
son. The positive rates for the 2000–2001, 2002–2003, 
and 2019–2020 seasons were more than 35% (Fig.  2). 
IBV isolated from the three screened seasons with high 
positive rates were regarded as positive samples, while 
those in the other 20 seasons had low pathogenicity and 

Table 1  Summary of feature descriptor and feature number

AAC​ amino acid composition, PC-PseAAC​ parallel correlation-based pseudo-amino-acid composition, GGAP the G-gap dipeptide composition, BIT20 twenty-bit feature, 
BIT21 twenty-one-bit feature, OLP overlapping property feature

Feature descriptor Feature type Feature number Feature descriptor Feature type Feature 
number

1 AAC​ 20 35 GGAP (g = 15) 441

2 PseAAC (λ = 0) 21 36 GGAP (g = 16) 441

3 PseAAC (λ = 1) 22 37 GGAP (g = 17) 441

4 PseAAC (λ = 2) 23 38 BIT20 (k = 4) 80

5 PseAAC (λ = 3) 24 39 BIT20 (k = 8) 160

6 PseAAC (λ = 4) 25 40 BIT20 (k = 12) 240

7 PseAAC (λ = 5) 26 41 BIT20 (k = 16) 320

8 PseAAC (λ = 6) 27 42 BIT20 (k = 20) 400

9 PseAAC (λ = 7) 28 43 BIT20 (k = 24) 480

10 PseAAC (λ = 8) 29 44 BIT20 (k = 28) 560

11 PseAAC (λ = 9) 30 45 BIT20 (k = 32) 640

12 PseAAC (λ = 10) 31 46 BIT20 (k = 36) 720

13 PseAAC (λ = 11) 32 47 BIT20 (k = 40) 800

14 PseAAC (λ = 12) 33 48 BIT21 (k = 4) 84

15 PseAAC (λ = 13) 34 49 BIT21 (k = 8) 168

16 PseAAC (λ = 14) 35 50 BIT21 (k = 12) 252

17 PseAAC (λ = 15) 36 51 BIT21 (k = 16) 336

18 PseAAC (λ = 16) 37 52 BIT21 (k = 20) 420

19 PseAAC (λ = 17) 38 53 BIT21 (k = 24) 504

20 GGAP (g = 0) 441 54 BIT21 (k = 28) 588

21 GGAP (g = 1) 441 55 BIT21 (k = 32) 672

22 GGAP (g = 2) 441 56 BIT21 (k = 36) 756

23 GGAP (g = 3) 441 57 BIT21 (k = 40) 840

24 GGAP (g = 4) 441 58 OLP (k = 4) 44

25 GGAP (g = 5) 441 59 OLP (k = 8) 88

26 GGAP (g = 6) 441 60 OLP (k = 12) 132

27 GGAP (g = 7) 441 61 OLP (k = 16) 176

28 GGAP (g = 8) 441 62 OLP (k = 20) 220

29 GGAP (g = 9) 441 63 OLP (k = 24) 264

30 GGAP (g = 10) 441 64 OLP (k = 28) 308

31 GGAP (g = 11) 441 65 OLP (k = 32) 352

32 GGAP (g = 12) 441 66 OLP (k = 36) 396

33 GGAP (g = 13) 441 67 OLP (k = 40) 440

34 GGAP (g = 14) 441
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were regarded as negative samples. The final dataset for 
model construction was composed of 1724 strains. Two 
groups were classified: (1) 865 viruses (positive sample; 
high pathogenicity; 2000–2001, 2002–2003, 2019–2020 
seasons) and 859 viruses (negative sample; low patho-
genicity; other 20 seasons). The information related to 
these strains is summarized in Additional file 1.

Signature position
The value 0.65 was set as the threshold for entropy 
screening, and 40 signature positions were achieved, 
as shown in Table  2. Each strain was represented by 40 
amino acids to fulfill further machine learning (Fig.  3). 
The HA and NA proteins contained the most selected 
amino acid residues (14 for both), which suggested that 
HA and NA are the most important factors for human 
pathogenicity. HA is mainly involved in receptor bind-
ing, membrane fusion, and antigen recognition. Signa-
ture positions 115–231 are located in or near the region 
of receptor binding and the antigenic determinant 
group. The mutations at position 135 had the highest 
value of 1.06 (Table 2). As shown in Fig. 3, the deletion 
at HA161–161 should be noted because amino acid 
deletion can strongly affect protein function. NA influ-
ences the release of viral particles from the cell surface. 

The mutations in positions 120–392 are closed related to 
the enzyme activity of viral neuraminidase. NB is a viral 
protein with a short length and is related to virus repli-
cation. The role for two mutations at positions 21 and 
99 should be further verified to understand the mecha-
nism of pathogenicity. Although most signature positions 
shown in Fig.  3 were located in HA, NA, and NB pro-
teins, the remaining eight mutations located at PB1, PA, 
NS1, or NEP proteins require additional attention during 
surveillance.

Optimal features with low dimension
After the informative features were generated from the 
67 RF predictors, the important scores for each feature 
were calculated by the mRMR algorithm. The SFS strat-
egy was used to increase the ranked features one by one. 
The subset with best performance was considered to 
have the optimal features and was proposed to construct 
the final model for pathogenicity identification (Fig.  4). 
For the class features, a maximum ACC of 94.2% was 
achieved and coupled with the maximum MCC of 88.4%. 
The best performance was achieved when feature num-
ber 4 was selected, which suggests that the top four class 
features have the optimal representation of IBV. For the 
probabilistic features, the top three features produced 

Fig. 2  Proportion of IBV in all positive samples per influenza season. The x-axis represents the seasons from 1997 to 2000. The y-axis represents the 
positive proportion for IBV. The ratio of 35% is shown by the dotted blue line
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the best model performance, with an ACC of 94.1% and 
MCC of 88.2%, which suggests that the top three proba-
bilistic features have the optimal representation of IBV.

Performance of the informative features
Two types of information features, the class label and 
probabilistic prediction, were received from the 67 RF 

Table 2  Amino acid set for pathogenicity identification

PB1 polymerase basic protein 1, PA polymerase acid protein, HA hemagglutinin, NP nucleoprotein, NA neuraminidase, NB glycoprotein NB, NS1 nonstructural protein 
1, NEP nuclear export protein
a B/Wisconsin/23/2019 (EPI_ISL_357982) as reference strain

Number Protein Positiona Entropy Number Protein Position Entropy

1 PB1 57 0.66 21 NA 49 0.82

2 PB1 752 0.68 22 NA 73 0.72

3 PA 352 0.73 23 NA 120 0.66

4 HA 47 0.70 24 NA 295 0.72

5 HA 74 0.69 25 NA 320 0.67

6 HA 115 0.67 26 NA 342 0.84

7 HA 128 0.94 27 NA 358 0.67

8 HA 132 0.70 28 NA 373 0.83

9 HA 135 1.06 29 NA 384 0.65

10 HA 145 0.69 30 NA 389 0.66

11 HA 149 0.67 31 NA 392 0.67

12 HA 161 0.99 32 NA 395 0.99

13 HA 162 0.70 33 NA 465 0.66

14 HA 173 0.65 34 NB 21 0.85

15 HA 200 0.68 35 NB 99 0.71

16 HA 228 0.72 36 NS1 111 0.85

17 HA 231 0.67 37 NS1 115 0.70

18 NP 9 0.66 38 NS1 120 0.67

19 NP 66 0.65 39 NS1 127 0.68

20 NA 45 0.66 40 NEP 88 0.71

Fig. 3  Signature positions in the 11 viral proteins. A Profile of 40 signature positions from positive samples of IBV. B Profile of 40 signature positions 
from negative samples of IBV. The x-axis represents the signature position in viral proteins. The y-axis represents the entropy value
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Fig. 4  Optimization of informative features. A The SFS curves for the ACC of ‘class’ and ‘prob’ features. B The SFS curves for the MCC of ‘class’ and 
‘prob’ features. The x-axis represents the incremental numbers of informative features. The y-axis represents the metric for the ACC and MCC. The 
ACC is marked in blue, while the MCC is marked in yellow

Table 3  Performance of the informative features

SE sensitivity, SP specificity, ACC​ accuracy, MCC Matthew’s correlation coefficient, TP true positive, TN true negative, FP false positive, FN false negative

Features ACC​ SE SP MCC TP TN FP FN

Class features 94.0 94.1 93.8 87.9 814 806 53 51

Probabilistic features 93.9 94.6 93.1 87.7 818 800 59 47

Optimal class features 94.2 95.0 93.4 88.4 822 802 57 43

Optimal probabilistic features 94.1 94.9 93.3 88.2 820 802 58 44
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predictors. As shown in Table  3, the features for class 
information slightly outperformed the features for prob-
abilistic information. In terms of ACC and MCC, the 
performances based on class information were 94.0% 
and 87.9%, while those based on probabilistic informa-
tion were 93.9% and 87.7%. The performance based on 
the optimal probabilistic features increased from 93.9 
to 94.1% for ACC and from 87.7 to 88.2% for MCC. The 
performance based on optimal class features increased 
from 94.0 to 94.2% for ACC and from 87.9 to 88.4% for 
MCC. The performances of the optimal features were 
better than those of the original features.

Comparison of informative features and amino acid 
features
In this paper, amino acid features were encoded from 
individual descriptors and input into the RF predic-
tor to generate the informative features. To explore the 
power of the optimal subset of informative features, we 
compared the performance of the optimized informative 
features and the corresponding amino acid features. As 
shown in Table  4, there were differences in the perfor-
mances of the optimal class feature and the amino acid 
features. The maximum ACC of 94.2% and maximum 
MCC of 88.4% were obtained from the optimal class 
feature, which were approximately 0.2–3% and 0.3–6% 
greater than those from amino acid features. It was nota-
ble that only four features were used for the optimal class 

feature, whereas OLP (k = 28) used 308 features, PC-
PseAAC (λ = 6) used 27 features, GGAP (k = 5) used 441 
features, and BIT20 (k = 12) used 240 features. The num-
ber for the optimal class feature was obviously lower than 
that for amino acid features.

As shown in Table 5, there were also differences in the 
performances of the optimal probabilistic feature and 
corresponding amino acid features. The maximum ACC 
of 94.1% and maximum MCC of 88.2% were obtained 
from the optimal probabilistic feature, which were 
approximately 0.3–3% and 0.6–6% greater than those of 
amino acid features. It was also notable that only three 
features were used for the optimal probabilistic feature, 
whereas BIT21 (k = 32) used 672 features, BIT20 (k = 4) 
used 80 features, AAC used 20 features, and BIT21 
(k = 4) used 84 features. The number for the optimal 
probabilistic feature was obviously lower than that for 
amino acid features.

Comparison of SFS and ensemble strategy
The SFS strategy was used to search the optimal sub-
set of informative features. To show the advantage of 
the SFS strategy, we compared the performances from 
the optimized informative features with those from two 
ensemble learning strategies (majority voting and prob-
ability averaging). The majority voting strategy consid-
ers the majority of class labels from the 67 RF models. 
The probability averaging strategy averages probabilistic 

Table 4  Performance of the optimal class features

SE sensitivity, SP specificity, ACC​ accuracy, MCC Matthew’s correlation coefficient, TP true positive, TN true negative, FP false positive, FN false negative, PC-PseAAC​ 
parallel correlation-based pseudo-amino-acid composition, GGAP the G-gap dipeptide composition, BIT20 twenty-bit feature, OLP overlapping property feature

Feature ACC​ SE SP MCC TP TN FP FN

Optimal class features 94.2 95.0 93.4 88.4 822 802 57 43

OLP (k = 28) 91.1 86.6 95.7 82.6 749 822 37 116

PC-PseAAC (λ = 5) 94.0 94.0 94.1 88.1 813 808 51 52

GGAP (g = 5) 93.6 92.7 94.4 87.1 802 811 48 63

BIT20 (k = 12) 91.0 86.2 95.7 82.3 746 822 37 119

Table 5  Performance of the optimal probabilistic features

SE sensitivity, SP specificity, ACC​ accuracy, MCC Matthew’s correlation coefficient, TP true positive, TN true negative, FP false positive, FN false negative, AAC​ amino acid 
composition, BIT20 twenty-bit feature, BIT21 twenty-one-bit feature

Feature ACC​ SE SP MCC TP TN FP FN

Optimal probabilistic 
features

94.1 94.9 93.3 88.2 820 802 58 44

BIT21 (k = 32) 91.8 88.3 95.3 83.9 764 819 40 101

BIT20 (k = 4) 91.0 86.2 95.7 82.3 746 822 37 119

AAC​ 93.8 93.5 94.1 87.6 809 808 51 56

BIT21 (k = 4) 91.0 86.2 95.8 82.4 746 823 36 119
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values from the 67 RF models to perform classification. 
As shown in Table 6, the ACC for the SFS was approxi-
mately 0.7% greater than that for the majority voting 
strategies, while the MCC for the SFS was approximately 
1.4% greater. The ACC for the SFS strategy was approxi-
mately 1% greater than that for the ensemble strategies, 
while the MCC for the SFS was approximately 2% greater. 
Both optimal features achieved better performance than 
the two ensemble methods.

Comparison of four classical classifiers
As mentioned above, the optimal features for class and 
probabilistic information had good performance. To use 
two types of the optimal features to identify pathogenic-
ity of IBV, we compared the performances of RF, support 
vector machine (SVM), Naïve Bayes (NB), and K-nearest 
neighbor (KNN). All machine learning methods were 
evaluated with tenfold cross-validation. When the opti-
mal class features were used, the RF method had better 
predictive performance than the NB and SVM methods 

Table 6  Performance of the SFS strategy

SFS sequential forward search, SE sensitivity, SP specificity, ACC​ accuracy, MCC Matthew’s correlation coefficient, TP true positive, TN true negative, FP false positive, FN 
false negative

Learning strategies ACC​ SE SP MCC TP TN FP FN

Optimal class features 94.2 95.0 93.4 88.4 822 802 57 43

Optimal probabilistic features 94.1 94.9 93.3 88.2 820 802 58 44

Major voting 93.5 92.0 95.0 87.1 796 816 43 69

Probability averaging 93.0 90.9 95.2 86.2 786 818 41 79

Fig. 5  Comparison of four traditional classifiers. A Performances of the optimal ‘class’ features. B Performances of the optimal ‘prob’ features. C ROC 
curves of the optimal ‘class’ features. D ROC curves of the optimal ‘prob’ features
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and the same performance as the KNN method (Fig. 5A). 
The RF method obtained an ACC of 94.2% and MCC of 
88.4%, which were approximately 1% and 1.4% greater 
than that of the NB method. The AUC for the RF method 
(0.95) was the same with those of the three other clas-
sifiers (Fig.  5C). When the optimal probabilistic feature 
was used, the RF method obtained an ACC of 94.0% and 
MCC of 88.1%, which were approximately 0.6% and 1.2% 
greater than that for the NB method (Fig. 5B). The AUC 
for the RF method (0.96) is the same as that for the NB 
method and is better than that for the SVM and KNN 
methods (Fig.  5D). According to the performances of 
four classical classifiers, the RF method was selected to 
treat the optimized informative features and construct 
the model for pathogenicity identification of IBV.

Software implementation
An easy-to-use software freely accessible via https://​
github.​com/​kouzh​eng/​BIVPr​ed-​FL was designed. The 
desired results can be easily achieved by the follow-
ing steps: (1) Prepare the ‘FASTA’ file of amino acid 
sequences for IBV. Examples of formatted sequences can 
be found in the software directory. (2) Input the name 
of the query file, select the type of feature information, 
and set the confidence parameter as required. The pre-
dicted label for ‘P’ represents the phenotype of high 
pathogenicity, while ‘N’ means low pathogenicity. Amino 
acid features from the 67 individual descriptors were also 
delivered to facilitate further analysis.

Discussion
In this study, we presented a method for pathogenicity 
identification of IBV to benefit public health [37]. The 
40 signature positions were first achieved to represent 
each strain. After two types of informative features were 
generated from the 67 RF predictors, the mRMR feature 
ranking algorithm was used to select the optimal sub-
set of informative features. The optimized informative 
features outperformed the original informative features 
and amino acid features from individual descriptors. The 
SFS strategy had better performance than two classical 
ensemble methods. Finally, the RF method was selected 
to treat the optimized informative features and construct 
the machine learning model to predict the phenotypes of 
IBV.

To reduce computing complexity, each strain was rep-
resented by 40 amino acids to fulfill further machine 
learning [22]. The HA and NA proteins contained the 
most selected amino acid residues (14 for both), which 
suggests that HA and NA are the most important factors 
for pathogenicity among humans. The role of two muta-
tions at positions 21 and 99 should be further verified to 
understand the mechanism of pathogenicity. Although 

most signature positions are located in HA, NA, or NB 
proteins [15, 16, 38], eight mutations located in PB1, PA, 
NS1, or NEP proteins need extra attention during surveil-
lance [14, 15, 17]. All signature positions were screened 
based on genome data of IBVs at a large scale, which will 
benefit the study of the pathogenicity mechanism [39].

Two types of informative features were generated by 
the RF predictors in this paper. Redundant and irrelevant 
features were filtered to improve the ability of IBV repre-
sentation. Good performance was achieved with the use 
of four class features and three probabilistic features. The 
optimal subset with low dimensions reduced the com-
plexity of computation. The optimal features about class 
information were achieved from four individual descrip-
tors: OLP (k = 28), PC-PseAAC (λ = 6), GGAP (k = 5), 
and BIT20. The optimal features about probabilistic 
information were obtained from three individual descrip-
tors: BIT21 (k = 32), BIT20 (k = 4), and AAC. The dis-
crimination from different perspectives will benefit the 
accuracy and interpretability of pathogenicity [40].

Although IBV has not caused a pandemic, the risk of 
pathogenicity for a pandemic should also be considered 
[41]. IBV poses a serious threat to susceptible groups, 
such as children and adolescents, and can cause serious 
clinical complications. The monitoring of transmission 
and further research of pathogenicity mechanism should 
be increased. The method in this paper is a powerful tool 
for pathogenicity identification of IBVs at a large scale 
and can facilitate further study in the field of virology.

Although features from signature positions were used 
to construct the model, whole genomes and full-length 
proteins should be considered to increase the perfor-
mance of the prediction model [26]. A mathematical 
algorithm should be designed for complex data of vari-
ous models to identify pathogenicity [18, 42]. However, 
applying the algorithm to multimodal data will be a chal-
lenge. The main limitation of this study was that only 
amino acids in signature positions were encoded to build 
the prediction model, and the whole genome with clinical 
image data was not involved. Although the pathogenicity 
risk may be predicted in view of the pathogen, compre-
hensive judgment should be exercised to minimize pan-
demic risk [43].

Conclusions
In this study, we presented a predictor for pathogenic-
ity identification of IBV. The 40 signature positions were 
screened to represent each strain. Two types of informa-
tive features were generated from 67 RF models, and the 
mRMR algorithm was used to select the optimal subset. 
Based on the SFS strategy, the dimension of features about 
class information was optimized to four, with a maximum 

https://github.com/kouzheng/BIVPred-FL
https://github.com/kouzheng/BIVPred-FL
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ACC of 94.2% and maximum MCC of 88.4%, and the 
dimension of features about probabilistic information was 
optimized to three, with a maximum ACC of 94.1% and 
maximum MCC of 88.2%. The optimal features outper-
formed the original informative features and amino acid 
features from individual descriptors. The SFS strategy had 
better performance than the two classical ensemble meth-
ods. The RF method was selected to predict the patho-
genicity when optimal features were used as input. We 
believe that the method in this paper can serve as a power-
ful tool for pathogenicity identification of IBV and benefit 
public health.
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