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SCOPING REVIEW

Environmental impacts of mass drug 
administration programs: exposures, risks, 
and mitigation of antimicrobial resistance
Joanna K. Konopka1*  , Pranab Chatterjee2, Connor LaMontagne3 and Joe Brown3 

Abstract 

Mass drug administration (MDA) of antimicrobials has shown promise in the reduction and potential elimination 
of a variety of neglected tropical diseases (NTDs). However, with antimicrobial resistance (AMR) becoming a global 
crisis, the risks posed by widespread antimicrobial use need to be evaluated. As the role of the environment in AMR 
emergence and dissemination has become increasingly recognized, it is likewise crucial to establish the role of MDA 
in environmental AMR pollution, along with the potential impacts of such pollution. This review presents the current 
state of knowledge on the antimicrobial compounds, resistant organisms, and antimicrobial resistance genes in MDA 
trials, routes of these determinants into the environment, and their persistence and ecological impacts, particularly in 
low and middle-income countries where these trials are most common. From the few studies directly evaluating AMR 
outcomes in azithromycin MDA trials, it is becoming apparent that MDA efforts can increase carriage and excretion 
of resistant pathogens in a lasting way. However, research on these outcomes for other antimicrobials used in MDA 
trials is sorely needed. Furthermore, while paths of AMR determinants from human waste to the environment and 
their persistence thereafter are supported by the literature, quantitative information on the scope and likelihood of 
this is largely absent. We recommend some mitigative approaches that would be valuable to consider in future MDA 
efforts. This review stands to be a valuable resource for researchers and policymakers seeking to evaluate the impacts 
of MDA.
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Background
Mass drug administration (MDA) programs have been 
successfully used as both prevention and treatment of 
neglected tropical diseases (NTDs), especially in low- 
and middle-income countries (LMICs) [1]. While the 
success of MDA programs might contribute to reduc-
ing childhood morbidity and mortality related to NTDs 
at the population level [2–5]. Potentially adverse envi-
ronmental effects of those programs must be carefully 

weighed alongside expected benefits and adverse events 
of MDA in humans [6, 7]. A hallmark of MDA programs 
is to eliminate the need for individual diagnosis and to 
administer treatment to all members in a given com-
munity at the same time, regardless of clinical presenta-
tion. This dramatically expanded use of antimicrobial 
agents (either individually or in combination) in a small 
geographic area, over a short time (weeks to months), 
can result in high quantities of unmetabolized drugs and 
bioactive compounds being introduced into the environ-
ment [8]. With most MDA programs using antimicrobial 
agents (including antibiotics and antiparasitics) [9], it is 
important to consider how the frequency of adminis-
tration of those agents, and the doses in which they are 
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administered, might be contributing to antimicrobial 
resistance (AMR) in the environment. Yet, environmen-
tal monitoring to assess AMR in the aftermath of MDA 
programs has been largely neglected.

AMR is the ability of microorganisms to withstand or 
resist the action of one or more antimicrobial agents, 
making them no longer responsive to drug treatments 
meant to eliminate them. At the population level, anti-
microbial (e.g., antibiotic) administration can select 
for emergence and spread of such resistant strains. 
Environmental compartments experiencing strong 
anthropogenic pressures are particularly susceptible to 
antimicrobial contamination and thus are at high risk of 
increased AMR [10, 11]. This resistance can be acquired 
through mutations or exchange of fragments or entire 
resistance genes via horizontal gene transfer (HGT) in 
the microbial community [12].

The exacerbation of AMR in the environment is mul-
tifactorial in nature and is thus difficult to assess and 
measure [13, 14]. The emergence and spread of AMR are 
at least partly caused by the human–environment inter-
actions and the intensification of human activities which 
demand increased antibiotic use. These human activities 
include: (i) intensification in agriculture, fisheries, and 
crop production to meet the global challenges to sustain 
food production and meat/fish-rich diets; (ii) intensifica-
tion of mass movements associated with urbanization, 
trade, and travel, as well as mass human and non-human 
animal migrations, and (iii) industrialization and land use 
changes, leading to increased pollution favoring patho-
gen transmission.

Additionally, the impact of antimicrobial environ-
mental contamination will not be the same everywhere 
and requires case-by-case analysis and risk assessment. 
Different LMICs can be affected by specific local prob-
lems as well as regional issues, leading to different out-
comes. Among the environmental factors that determine 
risks of antibiotic contaminants are the composition of 
the microbial community as well as water and nutrient 
amounts already present in the environment (e.g., from 
manure) [15]. These factors, in turn, determine how 
quickly the populations of resistant microbes can grow 
and exchange resistance genes with other members of 
the microbial community, thus affecting transmission 
and persistence of AMR in the environment. Additional 
determinants that need to be taken into consideration are 
human population size and overcrowding, state of and 
access to water-sanitation-hygiene infrastructure, pres-
ence and seasonality of enteric infections, as well as loca-
tion, amount, and periodicity of antibiotic discharge (e.g. 
single vs repeated) in a given community.

The risk of contaminating the environment with anti-
microbial residues, particularly in the aftermath of MDA 

activities, raises concerns about the environmental threat 
of AMR [16]. These scenarios remain especially likely in 
settings with inadequate waste containment and treat-
ment [17]. Micro- and macro-organisms (e.g., phyto- and 
zooplankton, fish, insects) in contact with such contami-
nated water and soil are at risk of being exposed to those 
compounds, which can lead to unanticipated impacts on 
their survival and fitness. Additionally, those exposed 
organisms (including but not limited to those in the 
microbial community) can acquire antibiotic resistance 
genes (ARGs) selected for via MDA. Combined, these 
risks call for closer examination of the emergence of 
AMR or transmission of ARGs to humans and other ani-
mals via the environment. If MDA plays a substantial role 
in AMR spread, the short-term health benefits may be 
outweighed by long-term loss of antimicrobial efficacy.

In this review, we synthesize the current state of 
knowledge on introduction of antimicrobials and their 
metabolites into the environment in the context of MDA 
and discuss MDA’s potential impact on ecosystems in 
resource-limited settings. The most commonly used anti-
bacterial agent in MDA programs is the macrolide antibi-
otic azithromycin for treatment, prevention, and control 
of trachoma and yaws [18–20]. We predominantly out-
line the role of azithromycin in generation of AMR and 
ARGs, and discuss other antimicrobial agents where data 
exist. We trace these compounds from the time they are 
excreted into the environment from humans and discuss 
the exposures, risks, and opportunities for mitigation of 
AMR.

Methods
Data for this scoping review were initially identified 
through a search of PubMed, Web of Science, and Google 
Scholar, using the keywords “mass drug administration,” 
“antibiotic,” and “ecology OR eco*.” This search (con-
ducted throughout the month of October 2021) provided 
an initial set of studies relevant to the topic. References 
from the initially identified studies were also reviewed 
and included if relevant. Only articles published in Eng-
lish were included. The authors did not use exclusion 
criteria based on year of publication and added further 
references based on their knowledge of the subject area. 
A consultation with a panel of subject matter experts 
was conducted prior to manuscript submission to evalu-
ate the accuracy and completeness of this review. These 
experts have been selected for their expertise in key areas 
being addressed by this review, including environmental 
microbiology, antimicrobial resistance, and environmen-
tal health. Specifically, these experts specialize in civil 
and environmental engineering; environmental micro-
biology and chemistry; environmental AMR emergence 
and dissemination; water, sanitation, and hygiene; and 
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agricultural AMR. These experts are not authors of this 
paper and their names, affiliations, and positions have 
been listed in the acknowledgements section.

MDA and AMR
Prevalence of AMR in humans following MDA programs
The available evidence suggests that azithromycin MDA 
can increase the prevalence of AMR across human com-
munities in a widespread and lasting way [21–25]. In 
these studies, azithromycin-resistant Escherichia coli 
and Streptococcus pneumoniae were detected via rec-
tal or nasopharyngeal swabs in as many as 55–68% of 
individuals in treated communities. This is compared 
to much lower (often single digit) prevalence in base-
line and control communities [25]. While these studies 
focused on selected pathogens, antibiotics often act on 
a wide range of microbes, and therefore resistance can 
develop even in harmless bystander organisms living in 
humans. These microbes are often missed when AMR 
surveillance focuses on specific organisms and not ARGs 
in general. Genetic determinants of macrolide resistance 
studied in the Niger arm of the MORDOR trial (semi-
annual azithromycin MDA) were elevated 7.5 times by 
the 3-year and 4-year timepoints [26]. Although preva-
lence of resistance did decline with time, elevated AMR 
levels were maintained in the populations for as long as 
6  months, even with just a single MDA dose [22, 23]. 
With no monitoring beyond the timeline of those stud-
ies, it is possible that AMR levels remained elevated for 
longer. Furthermore, even when azithromycin is admin-
istered on its own, it can increase rates of resistance to 
other macrolides like erythromycin as well as to clinically 
relevant non-macrolide antibiotics like trimethoprim/
sulfamethoxazole, beta-lactams, and aminoglycosides 
[24, 27]. This co-selection of resistance to antibiotics 
other than those being administered is well-recognized, 
and may occur via a variety of mechanisms, includ-
ing genes for different resistances being located on the 
same mobile genetic element (and therefore passed as a 
unit between microbes) and one ARG being useful for 
resisting multiple types of antibiotics [28]. The Cochrane 
Review of Trachoma control echoes the above assess-
ment of the literature as supporting a risk of lasting mul-
tidrug AMR development in response to azithromycin 
MDA [29]. In total, prolonged elevated levels of AMR 
in patients may defeat the original purpose of the MDA 
effort by introducing more persistent infections and thus 
less treatable disease, as noted elsewhere [30].

Literature on impacts of MDA on resistance to other 
antimicrobials is sparse. Resistance is a concern for MDA 
campaigns against schistosomiasis, as it relies on a sin-
gle drug, praziquantel [31]. AMR in soil-transmitted hel-
minths (STH) is expected to develop slowly from MDA. 

Yet, the availability of only two benzimidazole antihel-
minth drugs (albendazole and mebendazole) and lim-
ited development of novel drugs are problematic should 
antihelminthic resistance arise [32]. Decreased efficacy 
of these benzimidazoles over the past two decades has 
already been reported [33]. Although there is a lack of 
direct evidence connecting lowered antihelminthic drug 
efficacy in humans and MDA for control of STHs [34], 
livestock animals may serve as a proxy for examination 
of resistance trends in response to MDA. Livestock often 
receive regular doses of the antimicrobials used in human 
MDA. Intestinal nematodes resisting benzimidazoles 
and ivermectin are already a serious problem in livestock 
globally and these trends are expected to continue as par-
asites are exposed to selective pressure [9, 35].

Resistance to the antimalarial artemisinin has become 
widespread in the Greater Mekong Subregion in South-
east Asia [36], and antimalarial MDA is considered to 
encourage resistance [37, 38]. However, it has been sug-
gested that well-managed MDA may not give rise to 
AMR in humans [39–41]. Proper management involves 
use of artemisinin-based combination treatment (ACT), 
reaching high coverage and adherence, timing imple-
mentation when transmission is lowest, and strong sur-
veillance [41]. A similar combination strategy might be 
beneficial in MDA programs using antibiotics to reduce 
the rise of AMR, provided that special care is taken to 
reduce bystander selection.

Environmental introduction of AMR
Once established in a human (e.g., colonization of the 
gut), drug resistant pathogens and resistance genes may 
spread into the environment via human waste. Gut car-
riage of resistant pathogens or ARGs may be prevalent 
even in healthy individuals [42] and elevated in LMIC 
settings [43], and these organisms may be selected for in 
individuals receiving antibiotics. Of particular concern 
in LMIC settings where large MDA trials are becoming 
more common is the potential role of inadequate sani-
tation in accelerating the emergence and dissemination 
of AMR in the environment [44]. These issues have not 
been extensively explored in settings where antibiotic 
stewardship and sanitation infrastructure are both poor 
[45], despite the likely role of AMR hotspots to lead to 
drug resistant phenotypes that may threaten global public 
health [46–48]. AMR can also be found in waste disposal 
systems such as pit latrines (fecal sludges and aque-
ous effluent from decentralized sanitation) and waste-
water treatment plants (wastewater, biosolids), where 
improper containment or inadequate treatment may 
then allow spread through runoff, seepage, or direct flow 
into groundwater, surface water, or other discharges to 
the environment [49, 50]. ARGs and associated resistant 
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phenotypes can thus spread rapidly within and between 
different communities as contaminated waste is mobi-
lized [51]. Multi-drug resistant enteric pathogens, such as 
carbapenem-resistant Enterobacteriaceae, are currently 
highlighted among the top global concerns in AMR [52]. 
A recent global burden of disease assessment of deaths 
attributable to AMR bacteria estimated that E. coli, Kleb-
siella pneumoniae, and Pseudomonas aeruginosa were 
among the six most common pathogens directly respon-
sible for AMR-associated deaths globally, each caus-
ing more than 250,000 deaths in 2019 [53]. These three 
bacteria are enriched in feces, and the feces-associated 
E. coli bacterium was the top such resistant pathogen, 
causing an estimated 23.4% (95% UI: 19.5–28.2) of total 
global deaths attributable to AMR and 24.3% (95% UI: 
22.9–25.8) of total deaths associated with AMR in 2019 
[53]. Inadequate sanitation results in the release of up 
to an estimated 6.5 ×  1010 kg of feces globally containing 
extended-spectrum beta lactamase (ESBL) producing E. 
coli, a figure that is expected to double by 2030 [54].

Antimicrobial resistant organisms are not the only 
AMR determinants found in waste from individuals 
receiving these drugs. Antimicrobials themselves may 
not be completely absorbed or metabolized by the body 
and are excreted in feces and urine, though this varies 
significantly by drug. For instance, substantial amounts 
of azithromycin are excreted unchanged (around 21%), 
while albendazole and its pharmacologically active 
metabolite albendazole sulfoxide are only excreted in 
minute amounts [55, 56]. Non-antibiotic antimicrobials 
seem to be absorbed more completely in general, though 
more pharmacokinetic research on these drugs would be 
valuable [57–59]. Once excreted, these compounds may 
follow the same paths as resistant organisms into the 
environment. For instance, upon entering wastewater 
systems, such antimicrobial residues have been described 
to follow one of three fates: biodegradation [60, 61], 
adsorption into sludge [62, 63], or emergence unchanged 
as pharmaceutical pollutants in the aquatic environment 
[64, 65]. The fate, transport, and persistence of antibiotic 
residues and metabolites in environmental media are not 
well understood. Studies from agricultural runoff suggest 
that such compounds may be present at elevated concen-
trations for weeks [66], and ARGs may remain elevated 
for longer. Persistence is likely to be a function of a range 
of biotic and abiotic environmental conditions and may 
be specific to the antibiotic. Of course, antibiotic load-
ing to the environment in highly impacted settings may 
result in long-term release of these compounds and their 
metabolites over time, allowing concentrations in envi-
ronmental media to remain elevated or accumulate.

Thus, human waste in LMICs may introduce anti-
microbials and other determinants of AMR into the 

environment. The degree and timescale of such introduc-
tion will depend on drug excretion rates, waste manage-
ment infrastructure, and the kinetics of persistence in 
the environment. Environmental introduction of AMR 
resulting from MDA can be expected to continue for as 
long as elevated AMR levels were observed in the MDA-
AMR studies highlighted above (e.g., at least 6 months). 
Indeed, AMR spread to environments in and around the 
home (i.e., the more immediate “environment” such as 
household soil) are also recognized [67], in particular as 
a locus of potentially high exposure. Domestic environ-
ments in LMICs may receive high levels of fecal loading 
both from non-human animals and inadequate sanitation 
at the household level [68–70].

Environmental risks, resistance determinants, 
and persistence
The persistence of resistant pathogens and other AMR 
determinants depends on several factors. Once in the 
environment, resistant pathogens vary in their ability to 
survive. For many pathogens, environmental conditions 
are too far removed from those inside human hosts for 
sustained survival. For more adaptable organisms like E. 
coli [71], soils and other environmental media represent 
important potential reservoirs, allowing for spread and 
persistence of ARGs [72]. Escherichia coli and related 
taxa have been observed as naturalized in both tropi-
cal and even temperate climates [71]. Even if a resistant 
organism cannot survive for long in its new surround-
ings, it may pass its ARGs to more suitable microbes 
by horizontal gene transfer (HGT) via the processes of 
transformation, transduction, or conjugation [73, 74]. 
ARGs have been shown to persist in environmental set-
tings across time [75], and, in the case of water environ-
ments, across geographies [76, 77].

Though these processes are clearly occurring, research 
evaluating their likelihood in environmental settings is 
largely absent. Such research would aid in establishing 
risks posed by releases of ARGs, antibiotics and their 
residues or metabolites, and AMR organisms into the 
environment. Despite the occurrence of these microbial 
processes, ARGs traditionally have been expected to be 
gradually lost from environmental organisms. This is 
because ARGs might not provide enough benefit to out-
weigh their fitness costs in the absence of exposure to 
therapeutic concentrations of antimicrobials [78]. How-
ever, even concentrations of antibiotics hundreds of times 
below a bacterium’s minimum inhibitory concentration 
(i.e., the threshold known to inhibit bacterial growth) 
have been shown to select for AMR under controlled 
laboratory settings [79, 80]. This suggests that antimi-
crobial compounds excreted by MDA participants might 
increase the persistence of ARGs in the environment, 
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even when diffuse. These studies were conducted in con-
trolled laboratory settings, so research in the environ-
ment (settings with variations in heat, UV exposure and 
salinity) would be needed to better support the validity 
of this phenomenon. MDA in single-dose regimens (e.g., 
20 mg/kg azithromycin) may represent lower overall con-
centrations than typical therapeutic doses (administered 
over several days) [81] and possibly lower than in agri-
cultural applications where dosing may be highly variable 
[82]. This will certainly vary by compound, as different 
drugs display different rates of degradation in the envi-
ronment [83]. The degree to which non-antibiotic anti-
microbial resistance genes persist in the environment is 
not known, though it may be possible.

Ecotoxicology
The presence of pharmaceutical agents in the environ-
ment can lead to emergence of AMR or selection for 
resistance, as well as non-target effects on other organ-
isms as a result of direct (i.e., physical contact with the 
pharmaceutical agents or their metabolites) or indirect 
(i.e., secondary contact with other affected organisms 
or individuals) exposures [84]. The specific role of MDA 
programs in causing such environmental contamina-
tion with antimicrobial agents is largely unknown. The 
emergence of AMR is influenced by a wide range of driv-
ers that are prevalent in settings where MDA is gaining 
currency. While there are growing concerns of the del-
eterious effect of chronic, low-grade exposure to human 
pharmaceutical agents in the environment, targeted stud-
ies exploring the ecological impacts of specific agents 
remain sparse [85].

The largest body of evidence of non-target effects of 
pharmaceuticals in the environment exists for antipara-
sitic or anti-helminthic drugs such as ivermectin. In 
addition to being used in agricultural context for farm 
animals, ivermectin is frequently employed in MDA pro-
grams to control diseases such as onchocerciasis and 
filariasis in humans. Most of the human and non-human 
administered ivermectin is eliminated in the feces [58, 
86]. A wide range of lethal and sublethal effects on soil 
communities, especially invertebrate fauna, have been 
recorded in response to ivermectin (Table 1). The insec-
ticidal action of excreted ivermectin is responsible for 
reduced biodiversity [87, 88] or elimination [89] of dung 
beetles. Even in low doses, ivermectin can significantly 
impair locomotion and ability to reproduce in beneficial 
cow-dung insect communities. Such a reduction in inver-
tebrate activity can in turn affect important ecosystem 
services they provide, including dung degradation, soil 
fertilization and seed dispersal [89, 90].

Less is known about potential ecotoxicological effects 
of antibiotics released in the environment. In humans, 

nearly half of an oral dose of azithromycin is excreted 
unchanged in stool, and about 6% in urine [55, 91–93]. 
Thus, as a result of MDA programs, a large quantity of 
this antibiotic is likely to be discharged into the envi-
ronment. Although no evidence of the ecotoxicologi-
cal impact of azithromycin is available in the context 
of MDA programs, laboratory studies suggest that its 
presence in the water or soil can negatively affect some 
organisms (e.g., phyto- and zooplankton) [94–96].

The majority of negative effects of azithromycin are 
recorded in aquatic ecosystems (Table 1). Azithromycin 
accelerates algal growth and disrupts algal photosynthe-
sis at low and high doses, respectively [94]. In fact, of 13 
tested antibiotics, azithromycin was the most toxic one 
to freshwater green-algae based on calculated EC50 val-
ues (i.e., concentrations of the compounds causing 50% 
algal growth inhibition compared to control) over a 96 h 
period [95]. Azithromycin also alters feeding behavior 
and nutrition accumulation of the zooplankton Daph-
nia magna [96]. Since algae and zooplankton form the 
basis of aquatic food webs, drastic and sudden changes 
in their population growth (as could be the case follow-
ing MDA in settings with insufficient sanitation infra-
structure) would likely cause a rippling effect through 
the entire ecosystem, especially in small bodies of water 
(e.g., creeks, ponds, drainage ditches etc.) with limited 
resilience. At higher trophic levels, azithromycin can 
cause larval morality, morphological abnormalities, and 
cardiotoxicity in European sea bass and zebrafish [97, 
98]. It causes moderate liver damage but is considered 
non-toxic in tilapia [99]. In addition to the lethal and 
sublethal effects, azithromycin has high bioaccumulation 
capacity in fish, and was detected in tissues of several fish 
and bivalves [100, 101]. Thus, when not lethal, the accu-
mulation of this antibiotic in animal tissues would ensure 
its presence in the ecosystem and possible movement 
through the food web, including back to humans via reg-
ular and frequent consumption of such animal tissues.

Similarly, little is known about the effects of azithro-
mycin on terrestrial ecosystems (Table  1). Most of the 
antibiotics in soils are introduced via the application 
of biosolids or livestock manure. Minimal toxicity was 
reported for microbial communities following direct 
application of biosolids or antibiotic mixture (includ-
ing azithromycin) to soils at realistic doses in a short-
term (up to 120 days) microcosm setup [102]. Similarly, 
at environmentally relevant concentrations, there was 
minimal toxicity and accumulation in food plants includ-
ing radish and lettuce [103]. While no toxicity response 
was noted for earthworms in azithromycin-treated soil, 
they accumulated the antibiotic in their tissues [102]. 
On the other hand, long-term field studies indicate that 
at high concentrations and with repeated application, 
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antibiotic mixture containing azithromycin can increase 
the abundance of ARGs (novel antibiotic resistance genes 
identified via functional metagenomics) in the soil [104]. 
Furthermore, one-time application of compost from 
various sources (including swine manure as well as food 
and yard waste) led to an increase in gene targets for 
macrolide resistance, which persisted in the soil for up 
to 4  years [105]. Thus, while the nutrient function and 
availability in soil would likely be unaffected in response 
to azithromycin, this macrolide has the potential to bio-
accumulate, enter the food web, and increase the abun-
dance of ARGs in soil over time (Table 1).

Despite the lack of studies directly evaluating the 
impact of MDA programs on environmental levels of 
antimicrobials and their subsequent ecological toxic-
ity, there is cause for concern. Such effects are not easily 
anticipated and can depend on type and length of expo-
sure in the environment. The persistence of azithromycin 
and ARG targets in the environment as well as bioac-
cumulation in some animal tissues calls for more care-
ful monitoring in the context of MDA programs. Given 
a wide range of toxicological effects in aquatic systems, 
many of which are sublethal (i.e., do not kill the organ-
ism), environmental assessments should consider more 
than just biodiversity (i.e., the number or presence of var-
ious organisms in the ecosystem) and look for sublethal 
effects as early warning signs. When large human popu-
lations are dosed simultaneously with an antibiotic dur-
ing MDA programs, even modest excretions could cause 
significant and long lasting ecotoxicological effects. Envi-
ronmental risk assessment exercises and long-term mon-
itoring conducted in conjunction with MDA programs 
could provide insights into the unintended impacts of the 
use of antimicrobials simultaneously on a large scale.

Environmental AMR exposures and human health
The human health risks posed by environmental AMR 
are not well understood, and direct evidence of AMR 
transmission from the environment to humans is lacking. 
A growing body of microbiological literature is showing 
extensive shared resistance between humans, non-human 
animals, and the environment, particularly in LMIC set-
tings [106, 107]. However, this research does not discern 
whether the direction of AMR sharing is from humans 
to the environment, vice-versa, or both. One study has 
been able to suggest transmission from the environment 
to humans—using an in-depth, multi-method approach, 
Yoon et  al. argued that an amikacin resistance gene 
travelled from the environmental species Acinetobacter 
guillouiae to the highly problematic clinical pathogen 
Acinetobacter baumanii [108]. Aside from this, the bulk 
of work in this area focuses on theoretical frameworks 
for assessing human health risks of environmental AMR, 

which point to risk factors such as presence of an ARG 
on a mobile genetic element or presence within a human 
pathogen [109, 110]. Quantitative, data-driven research is 
still needed to develop our understanding of this poten-
tial pathway for AMR dissemination.

Ultimately, the risk of exposure to environmental AMR 
is likely to be heterogenous, with higher risk to communi-
ties living in areas with greater antimicrobial agent expo-
sure and poor water, sanitation, and hygiene (WASH) 
infrastructure or environmental protection measures. 
Indeed, multiple potential routes of exposure to resistant 
pathogens in low-resource settings are recognized, such 
as washing foods with contaminated water, floods, and 
children playing in open drains and cesspools [44]. Rapid 
urbanization and population growth further exacerbate 
factors promoting the risk of AMR transmission from 
environmental sources [111]. Thus, there are likely dif-
ferences in how AMR spreads in rural communities (e.g., 
less likely to possess adequate WASH infrastructure) ver-
sus urban communities (e.g., more crowding) in LMICs. 
However, it is not clear whether these differences posi-
tion rural or urban communities as more susceptible to 
environmental AMR dissemination and reinfection.

Strategies for mitigation of AMR following MDA
While the risks are so far poorly characterized, mitiga-
tion strategies are needed to effectively limit potentially 
serious adverse impacts of AMR linked to MDA pro-
gramming. Modeling in the context of malaria elimina-
tion MDA programs indicates a wide range of factors 
may be associated with the emergence of drug resistance 
[39]. Identifying which factors are associated with AMR 
in the context of MDA programs is complicated by the 
role of co-selection of resistance genes or alterations in 
gut microbiomes, which may augment the sharing of 
ARGs or emergence of AMR organisms.

One approach to mitigate the environmental risk of 
AMR is to treat wastewater effluent to remove antimi-
crobial pollutants. There is no direct data on how MDA 
programs affect environmental antimicrobial pollution. 
However, hospital wastewater contaminates environ-
mental compartments with AMR organisms or ARGs. 
Hospital effluents have higher concentrations of AMR 
organisms and ARGs, and they have a diverse group of 
AMR determinants, often enriched by fecal contamina-
tion [76, 112–116]. Although treatment of such effluents 
using conventional wastewater management strategies 
may reduce the burden of AMR organisms [117], varia-
tion exists in the amounts of antimicrobial residues that 
can be removed by wastewater treatment processes [118]. 
Removing antimicrobial residues from urban wastewa-
ter is a difficult process, and this could be an even larger 
problem in the setting of MDA programs in LMICs [119]. 
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An estimated 3.6 billion people (approximately 46% of 
the global population) lacked safely managed sanitation 
in 2020 [120]. Without sanitation infrastructure that can 
properly contain human excreta, downstream exposures 
to wastes containing antibiotics, metabolites, ARGs, and 
AR pathogens is possible. Treatment of waste streams to 
remove AMR determinants would be even more chal-
lenging in these circumstances.

Use of antimicrobials has become a “quick fix” for 
deeply entrenched problems in many LMICs [121]. Miti-
gation strategies need to be identified for the short- and 
long-term control of adverse impacts of MDA on anti-
microbial residues, AMR organisms and ARGs in the 
environment. Access to and consistent use of appropri-
ate WASH infrastructure, both at the community level 
and in healthcare facilities, could reduce the transmis-
sion of AMR organisms. It also has the added benefit of 
reducing the spread of infectious diseases in general, thus 
limiting the need for MDA [122]. The relatively low cov-
erage of WASH infrastructure in healthcare facilities in 
LMICs further increases the chances of emergent AMR 
infections in such settings, especially in an environment 
with high levels of antimicrobial pollution [123]. Tar-
geted hygiene services, supply of clean potable water, and 
access to appropriate sanitation facilities have been asso-
ciated with lower levels of circulating AMR organisms in 
community settings and in healthcare facilities [124].

Longitudinal environmental impact assessments 
should accompany ongoing or future MDA efforts. 
With multiple MDA programs and trials on the horizon, 
there is an opportunity to capitalize on ongoing efforts 
to address key knowledge gaps about how MDA affects 
environmental compartments [125]. In addition, inno-
vative options, such as wastewater surveillance, provide 
synergies between pathogen detection [126] and AMR 
containment efforts. Wastewater monitoring could be 
used to examine not only the impact of MDA programs 
on environmental antimicrobial pollution, but also their 
impact on emergence of AMR organisms and spread of 
ARGs. Such a monitoring system would provide early 
signals of emergent AMR threats, and background data 
against which the impact of MDA programs and AMR 
mitigation efforts can be assessed. Existing wastewater 
surveillance systems for polio or COVID-19 can provide 
a starting point [127, 128] possibly building on the World 
Health Organization Tricycle Protocol [129] that focuses 
on ESBL E. coli monitoring in environmental matrices 
[130]. This protocol has been designed specifically for 
cost-effective, at-scale AMR monitoring in LMICs.

Risk assessment efforts should guide decision-making 
for using azithromycin MDA to improve child survival. 
Modeling approaches could be employed to identify 
countries or communities which are likely to have the 

most benefit from MDA [131]. These frameworks, in 
combination with an environmental surveillance sys-
tem, can be used to construct an early warning system 
for MDA-associated AMR. Some experts have also rec-
ommended using a multi-criteria decision tool, in con-
sultation with the relevant local stakeholders, prior to 
expanding the use of azithromycin as an agent for MDA 
[5].

Recommendations
While this review has identified and assessed the avail-
able evidence of the potential environmental impacts of 
MDA, many research questions remain (Table  2). Here, 
we provide the following recommendations for stake-
holders, including policy makers:

• Integrated, standardized monitoring of AMR emer-
gence and dissemination alongside MDA programs 
using appropriate designs and measures. At mini-
mum, trials should incorporate pre- and post-inter-
vention monitoring with appropriate controls across 
time scales that will capture proximal and medium-
term effects of MDA on phenotypic and genotypic 
resistance measures in microbes of interest.

• Monitoring concentrations of MDA-relevant antimi-
crobials in waste streams and environments around 
treated populations. These concentrations would be 
compared to concentrations expected to promote 
resistance in environmental organisms, such as pre-
dicted no effect concentrations (PNECs) [132], in 
order to evaluate the ongoing threat of AMR emer-
gence.

• Environmental impact assessments of ecotoxicologi-
cal effects on organisms in the environment should 
consider not only population sizes and biodiversity 
but also include measures of sublethal effects as early 
warning signs.

• Case-by-case risk assessment analysis of the impacts 
of antimicrobial environmental contamination in dif-
ferent communities to account for the multifacto-
rial nature of the AMR exacerbation. Special care is 
needed to account for local and regional variations 
(both environmental and human in nature).

• Modeling of known and predicted risk factors to 
determine which interventions could have the great-
est impact.

Conclusions
This review identified the growing evidence base around 
the environmental threats associated with MDA pro-
grams. Despite there being very few studies conduct-
ing environmental risk assessments alongside MDA 
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programs, there are causes for concern. When admin-
istered on a population level, antimicrobials which may 
be discharged through urine and stool, can pose risks 
including contamination of the environment across 
scales, and setting off cascades of unintended conse-
quences. Even at low concentrations, these pharmaceu-
ticals can disrupt the balance of ecosystems, especially 
aquatic ones.

Given the uncertain mechanism behind the improved 
child survival associated with MDA of azithromycin, it 
is possible that in the absence of other systemic changes, 
longer term or multiple MDA efforts may be needed to 
maintain the successes. While the risk of emergent AMR 
organisms in short term efforts may be offset by morbid-
ity and mortality prevention, longer term benefits may be 
attenuated by increasing health risks imposed by emer-
gent AMR.

Multiple MDA programs are being planned with no 
apparent monitoring to assess the environmental risks 
and consequences. While these programs might have 
reduced morbidity and mortality linked to NTDs, it is 
always preferable to institute systemic changes which 
can address deeper factors impeding improvement of 
maternal and child survival. Until then, we suggest that 
MDA-based approaches should be deployed in combina-
tion with environmental risk assessment and mitigation 
frameworks, to ensure that the ecotoxicological impacts 
of the excreted drugs are minimized.
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AMR antimicrobial resistance, HGT horizontal gene transfer, ARG  antibiotic resistance genes
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AMR produced by MDA Moderate  AMR impacts of MDA with antimicrobials other than azithromy-
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Environmental introduction of AMR and antimicrobials Strong  The role of inadequate sanitation in AMR emergence in settings 
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 Pharmacokinetics of non-antibiotic antimicrobials in MDA stud-
ies

 Persistence of antimicrobials in environmental settings

Environmental persistence of AMR Moderate  The likelihood of AMR dissemination via HGT in environmental 
settings

 Differences between ARGs and genes for resistance to other 
antimicrobials

Ecotoxicology Limited  Ecotoxicological effects of MDA-relevant antimicrobials other 
than azithromycin and ivermectin

 Ecotoxicological effects in response to MDA

Transmission of AMR from the environment to humans Limited  Quantitative understanding of the risk posed by environmental 
ARGs
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