One explanation for the slow awakening to the role of NTDs is that their mortality is generally low and they often present with only subtle symptoms that hamper assessment of their burden. For example, hookworm infection and schistosomiasis are leading causes of anaemia[5, 6] that can result in delayed cognitive development, poor school/work performance and impaired growth[7–9]. In addition, lack of sufficiently sensitive diagnostic tools undermine reliable assessments of prevalence and intensity of disease[10, 11], and this weakness becomes acute in areas where disease control has progressed significantly since the combination of low levels of infection and low prevalence produces a negative bias. Ignorance of the real situation leads to faulty impact estimates, sometimes leading to redirected control activities and re-emergence of disease. All this conspires to keeping us in the dark with respect to chronic afflictions, which only become manifest long after infection.
To some extent, the pathological ramifications induced by the NTDs remain unknown since there are few studies on how concurrent infections influence each other. Not only do morphological similarities between some parasites (and/or their eggs) blur the diagnostic picture, the dearth of representative samples due to interactions between parasite species adds to the difficulties in assessing the impact[12, 13]. Frequency of infection and specific characteristics of multi-parasitism are seldom available in routinely collected data and this leads to ill-defined morbidity assessments. For example, the spatial overlap between tuberculosis (TB), malaria and infections by the human immunodeficiency virus (HIV) on the one hand, and the NTDs on the other, marginalizes the impact of the latter group[14]. In addition, the influence of animal reservoirs on the epidemiological profile of diseases such as the food-borne trematode infections (FBT) and the cestode infections is often overlooked, but general evidence provided by the veterinary public health sector suggests that the human dimension of many zoonotic infections is strongly underestimated.
The goal of HIS is to produce quality and timely information for evidenced-based decisions and interventions. However, HIS is generally weak in the developing world since donors tend to rely more on national surveys and also still favour a vertical approach[15], while the key for sustained progress is to enhance the entire system rather than focus on individual diseases. However, the MDGs have ushered in an unprecedented demand for health information, while current administrative decentralization has led to increased reporting requirements and performance-based resource allocation. Since critical analysis and assessment of appropriate policies and strategies need a well-functioning HIS department, strengthening of human resources and coordination/integration of data collection is essential. Support is particularly important as the developing countries generally lack public health capability and are not equipped to deal with the many problems threatening their progress. Stimulation of policy research facilitating the control of diseases of regional importance is a question of overriding importance in convincing national governments to strengthen their own HIS capabilities and to better orientate their control programmes towards public health activities that can be sustained. To gain the upper hand in controlling the NTDs, the tools of recognition and discovery such as diagnostics, geospatial sciences and health metrics should be emphasized. This approach must go hand in hand with strengthening surveillance and the establishment of an early warning system (EWS) approach with respect to infectious diseases[16, 17]. However, progress needs also to be linked to cross-cutting themes such as socioeconomic issues and matters of more general impact, for example, climate change. From the human resource point of view, training and broadening of capacity should be strengthened accordingly.
Some diseases are becoming eliminated in parts of the world, but the risk is that they re-emerge if not carefully monitored. Notably, China plans to eliminate schistosomiasis and malaria by 2020. This should produce a substantial increase in human welfare, underpin socio-economic growth and create a virtuous circle leading away from vulnerability. However, sustained success requires strong emphasis on surveillance. An approach utilizing well-designed informatics platforms has the potential to improve support systems and strengthen control activities as these can rapidly locate high-risk areas and retrieve all important data needed as well as provide detailed, up-to-date information on the performance of any ongoing control programme. Interestingly, the application of geographical information systems (GIS) and remote sensing from satellites are transforming epidemiological thinking into research agendas that offer solutions leading to the development of integrated systems for disease control and surveillance[18]. HIS has an important role to play in the development and implementation of surveillance and prediction of risk areas. In this connection, computerized informatics platforms based on geospatial technology should be considered. Indeed, open-source software platforms have been developed and used for risk assessment for two NTDs: dengue in Argentina[19] and schistosomiasis in China[20]. The former includes environmental, viral, entomological and social information for about 3,000 cities in that country. It updates regularly risk vectors for each locality according to the European Space Agency standards for space informatics and provides also specific maps modelling the dengue risk inside selected cities. The Chinese approach, focused on schistosomiasis risk, was developed by combining spatial data from Google Earth software with a GIS package, bundling the separate modules together with an Internet connection into a well-functioning ‘WebGIS’ system. These platforms are primarily aimed at becoming a dynamic tool for surveillance and response for health managers. The approach is very versatile in the sense that it provides evidence-based, near real-time disease status for many users simultaneously, thereby providing rapid information-sharing at all levels of decision-making and facilitating rapid point-of-care response.