Goosse H, Barriat PY, Lefebvre W, Loutre MF and Zunz V, (2008–2010). Introduction to climate dynamics and climate modeling. Online textbook available at http://www.climate.be/textbook.
Sofaer HR, Barsugli JJ, Jarnevich CS, Abatzoglou JT, Talbert MK, Miller BW, et al. Designing ecological climate change impact assessments to reflect key climatic drivers. Glob Chang Biol. 2017;23(7):2537–53. https://doi.org/10.1111/gcb.13653.
Article
PubMed
Google Scholar
Tjaden NB, Caminade C, Beierkuhnlein C, Thomas SM. Mosquito-borne diseases: advances in modelling climate-change impacts. Trends Parasitol. 2018;34(3):227–45. https://doi.org/10.1016/j.pt.2017.11.006.
Article
PubMed
Google Scholar
Snyder CW. Evolution of global temperature over the past two million years. Nature. 2016;538:226–8 (13 October). https://doi.org/10.1038/nature19798.
Article
CAS
PubMed
Google Scholar
IPCC. In: Core Writing Team, Pachauri RK, Meyer LA, editors. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: IPCC; 2014. p. 151.
Google Scholar
Caminade C, McIntyre MK, Jones AE. Climate change and vector-borne diseases: where are we next heading? J Infect Dis. 2016;214(9):1300–1.
Article
Google Scholar
Hansen J, Sato M, Ruedy R, Lo K, Lea DW, Medina-Elizade M. Global temperature change. Proc Natl Acad Sci. 2006;103(39):14288–93.
Article
CAS
Google Scholar
Patt AG, Tadross M, Nussbaumer P, Asante K, Metzger M, Rafael J, et al. Estimating least-developed countries’ vulnerability to climate-related extreme events over the next 50 years. Proc Natl Acad Sci. 2010;107(4):1333–7.
Article
CAS
Google Scholar
Weissenböck H, Hubálek Z, Bakonyi T, Nowotny N. Zoonotic mosquito-borne flaviviruses: worldwide presence of agents with proven pathogenicity and potential candidates of future emerging diseases. Vet Microbiol. 2010;140(3–4):271–80.
Article
Google Scholar
Keller CF. Global warming: the balance of evidence and its policy implications: a review of the current state-of-the-controversy. Sci World J. 2003;3:357–411.
Article
Google Scholar
Eikenberry SE, Gumel AB. Mathematical modeling of climate change and malaria transmission dynamics: a historical review. J Math Biol. 2018;77(4):857–933. https://doi.org/10.1007/s00285-018-1229-7.
Article
PubMed
Google Scholar
Parham PE, Waldock J, Christophides GK, Hemming D, Agusto F, Evans KJ, et al. Climate, environmental and socio-economic change: weighing up the balance in vector-borne disease transmission. Philos Trans R Soc Lond Ser B Biol Sci. 2015;370(1665). https://doi.org/10.1098/rstb.2013.0551.
Tong S, Dale P, Nicholls N, Mackenzie JS, Wolff R, McMichael AJ. Climate variability, social and environmental factors, and ross river virus transmission: research development and future research needs. Environ Health Perspect. 2008;116(12):1591–7.
Article
Google Scholar
Wilson AJ, Morgan ER, Booth M, Norman R, Perkins SE, Hauffe HC, et al. What is a vector? Philos Trans R Soc Lond Ser B Biol Sci. 2017;372(1719). https://doi.org/10.1098/rstb.2016.0085.
Watts DM, Burke DS, Harrison BA, Whitmire RE, Nisalak A. Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus. Am J Trop Med Hyg. 1987;36:143–52.
Article
CAS
Google Scholar
Reisen WK, Fang Y, Martinez VM. Effects of temperature on the transmission of West Nile virus by Culex tarsalis (Diptea : Culicidae). J Med Entomol. 2006;43:309–17.
Article
Google Scholar
Severson DW, Behura SK. Genome investigations of vector competence in Aedes aegypti to inform novel arbovirus disease control approaches. Insects. 2016;7(4):58. https://doi.org/10.3390/insects7040058.
Article
PubMed Central
Google Scholar
Dohm DJ, O'Guinn ML, Turell MJ. Effect of environmental temperature on the ability of Culex pipiens (Diptera: Culicidae) to transmit West Nile virus. J Med Entomol. 2002;39(1):221–5.
Article
Google Scholar
Girard YA, Popov V, Wen J, Han V, Higgs S. Ultrastructural study of West Nile virus pathogenesis in Culex pipiens quinquefasciatus (Diptera: Culicidae). J Med Entomol. 2005;42(3):429–44.
Article
Google Scholar
Reisen WK, Meyer RP, Presser SB, Hardy JL. Effect of temperature on the transmission of western equine encephalomyelitis and St. Louis encephalitis viruses by Culex tarsalis (Diptera: Culicidae). J Med Entomol. 1993;30(1):151–60.
Article
CAS
Google Scholar
Pedigo LP. Entomology and Pest management. 2nd ed. New York: Macmillan Publishing Company; 1991.
Google Scholar
Baskerville GL, Emin P. Rapid estimation of heat accumulation from maximum and minimum temperatures. Ecology. 1969;50:514–7.
Article
Google Scholar
Wilson LT, Barnett WW. Degree-days: an aid in crop and Pest management. Calif Agric. 1983;37:4–7.
Google Scholar
Huffaker CB, Rabb RL. Ecological Entomology. 1st ed. New York: Wiley; 1984.
Google Scholar
Turell MJ, Rossi CA, Bailey CL. Effect of extrinsic incubation temperature on the ability of Aedes taeniorhynchus and Culex pipiens to transmit Rift Valley fever virus. Am J Trop Med Hyg. 1985;34:1211–8.
Article
CAS
Google Scholar
Turell MJ, Beaman JR, Tammariello RF. Susceptibility of selected strains of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) to chikungunya virus. J Med Entomol. 1992;29:49–53.
Article
CAS
Google Scholar
Goindin D, Delannay C, Ramdini C, Gustave J, Fouque F. Parity and longevity of Aedes aegypti according to temperatures in controlled conditions and consequences on dengue transmission risks. PLoS One. 2015;10(8):e0135489. https://doi.org/10.1371/journal.pone.0135489.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oliver SV, Brooke BD. The effect of elevated temperatures on the life history and insecticide resistance phenotype of the major malaria vector Anopheles arabiensis (Diptera: Culicidae). Malar J. 2017;16(1):73. https://doi.org/10.1186/s12936-017-1720-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chretien JP, Anyamba A, Small J, Britch S, Sanchez JL, Halbach AC, et al. Global climate anomalies and potential infectious disease risks: 2014-2015. PLoS Curr. 2015;7. https://doi.org/10.1371/currents.outbreaks.95fbc4a8fb4695e049baabfc2fc8289f.
Carrington LB, Armijos MV, Lambrechts L, Scott TW. Fluctuations at a low mean temperature accelerate dengue virus transmission by Aedes aegypti. PLoS Negl Trop Dis. 2013;7(4):e2190. https://doi.org/10.1371/journal.pntd.0002190.
Article
PubMed
PubMed Central
Google Scholar
Sigfrid L, Reusken C, Eckerle I, Nussenblatt V, Lipworth S, Messina J, et al. Preparing clinicians for (re-)emerging arbovirus infectious diseases in Europe. Clin Microbiol Infect. 2018;24(3):229–39. https://doi.org/10.1016/j.cmi.2017.05.029.
Article
CAS
PubMed
Google Scholar
Tabachnick WJ. Nature, nurture and evolution of intra-species variation in mosquito arbovirus transmission competence. Int J Environ Res Public Health. 2013;10(1):249–77. https://doi.org/10.3390/ijerph10010249.
Article
PubMed
PubMed Central
Google Scholar
Kramer LD, Ciota AT. Dissecting vectorial capacity for mosquito-borne viruses. Curr Opin Virol. 2015;15:112–8. https://doi.org/10.1016/j.coviro.2015.10.003.
Article
PubMed
PubMed Central
Google Scholar
Oo TT, Storch V, Madon MB, Becker N. Factors influencing the seasonal abundance of Aedes (Stegomyia) aegypti and the control strategy of dengue and dengue haemorrhagic fever in Thanlyin township, Yangon City, Myanmar. Trop Biomed. 2011;28(2):302–11.
CAS
PubMed
Google Scholar
Brady OJ, Johansson MA, Guerra CA, Bhatt S, Golding N, Pigott DM, et al. Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings. Parasit Vectors. 2013;6:351. https://doi.org/10.1186/1756-3305-6-351.
Article
PubMed
PubMed Central
Google Scholar
Ngowo HS, Kaindoa EW, Matthiopoulos J, Ferguson HM, Okumu FO. Variations in household microclimate affect outdoor-biting behaviour of malaria vectors. Wellcome Open Res. 2017;2:102. https://doi.org/10.12688/wellcomeopenres.12928.1.
Article
PubMed
PubMed Central
Google Scholar
Mandal R, Das P, Kumar V, Kesari S. Spatial distribution of Phlebotomus argentipes (Diptera: Psychodidae) in eastern India, a case study evaluating multispatial resolution remotely sensed environmental evidence and microclimatic data. J Med Entomol. 2017;54(4):844–53. https://doi.org/10.1093/jme/tjw232.
Article
PubMed
Google Scholar
Omer SM, Cloudsley-Thompson JL. Survival of female Anopheles gambiae Giles through a 9-month dry season in Sudan. Bull World Health Organ. 1970;42(2):319–30.
CAS
PubMed
PubMed Central
Google Scholar
Loevinsohn ME. Climatic warming and increased malaria incidence in Rwanda. Lancet. 1994;343(8899):714–8.
Article
CAS
Google Scholar
Martens WJ, Niessen LW, Rotmans J, Jetten TH, McMichael AJ. Potential impact of global climate change on malaria risk. Environ Health Perspect. 1995;103(5):458–64.
Article
CAS
Google Scholar
Lindsay SW, Birley MH. Climate change and malaria transmission. Ann Trop Med Parasitol. 1996;90(6):573–88.
Article
CAS
Google Scholar
Rogers DJ, Randolph SE. The global spread of malaria in a future, warmer world. Science. 2000;289(5485):1763–6.
Article
CAS
Google Scholar
Murdock CC, Sternberg ED, Thomas MB. Malaria transmission potential could be reduced with current and future climate change. Sci Rep. 2016;6:27771. https://doi.org/10.1038/srep27771.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alonso D, Bouma MJ, Pascual M. Epidemic malaria and warmer temperatures in recent decades in an east African highland. M Proc Biol Sci. 2011;278(1712):1661–9. https://doi.org/10.1098/rspb.2010.2020. Epub 2010 Nov 10.
Article
Google Scholar
Kulkarni MA, Desrochers RE, Kajeguka DC, Kaaya RD, Tomayer A, Kweka EJ, et al. 10 years of environmental change on the slopes of Mount Kilimanjaro and its associated shift in malaria vector distributions. Front Public Health. 2016;4:281. https://doi.org/10.3389/fpubh.2016.00281.
Article
PubMed
PubMed Central
Google Scholar
Salahi-Moghaddam A, Khoshdel A, Dalaei H, Pakdad K, Nutifafa GG, Sedaghat MM. Spatial changes in the distribution of malaria vectors during the past 5 decades in Iran. Acta Trop. 2017;166:45–53. https://doi.org/10.1016/j.actatropica.2016.11.001.
Article
CAS
PubMed
Google Scholar
Tantely ML, Rakotoniaina JC, Tata E, Andrianaivolambo L, Fontenille D, Elissa N. Modification of Anopheles gambiae distribution at high altitudes in Madagascar. J Vector Ecol. 2012;37(2):402–6. https://doi.org/10.1111/j.1948-7134.2012.00244.x.
Article
PubMed
Google Scholar
Siraj AS, Santos-Vega M, Bouma MJ, Yadeta D, Ruiz Carrascal D, Pascual M. Altitudinal changes in malaria incidence in highlands of Ethiopia and Colombia. Science. 2014;343(6175):1154–8. https://doi.org/10.1126/science.1244325.
Article
CAS
PubMed
Google Scholar
Delgado-Petrocelli L, Córdova K, Camardiel A, Aguilar VH, Hernández D, Ramos S. Analysis of the El Niño/La Niña-southern oscillation variability and malaria in the Estado Sucre, Venezuela. Geospat Health. 2012;6(3):S51–7.
Article
Google Scholar
Xiang J, Hansen A, Liu Q, Tong MX, Liu X, Sun Y, et al. Association between malaria incidence and meteorological factors: a multi-location study in China, 2005-2012. Epidemiol Infect. 2018;146(1):89–99. https://doi.org/10.1017/S0950268817002254.
Article
CAS
PubMed
Google Scholar
Boyce R, Reyes R, Matte M, Ntaro M, Mulogo E, Metlay JP, et al. Severe flooding and malaria transmission in the Western Ugandan highlands: implications for disease control in an era of global climate change. J Infect Dis. 2016;214(9):1403–10 Epub 2016 Aug 17.
Article
Google Scholar
Bennett A, Yukich J, Miller JM, Keating J, Moonga H, Hamainza B, et al. The relative contribution of climate variability and vector control coverage to changes in malaria parasite prevalence in Zambia 2006-2012. Parasit Vectors. 2016;9(1):431. https://doi.org/10.1186/s13071-016-1693-0.
Article
PubMed
PubMed Central
Google Scholar
Park JW, Cheong HK, Honda Y, Ha M, Kim H, Kolam J. Time trend of malaria in relation to climate variability in Papua New Guinea. Environ Health Toxicol. 2016;31:e2016003. https://doi.org/10.5620/eht.e2016003.
Article
PubMed
PubMed Central
Google Scholar
Imai C, Cheong HK, Kim H, Honda Y, Eum JH, Kim CT, et al. Associations between malaria and local and global climate variability in five regions in Papua New Guinea. Trop Med Health. 2016;44:23. https://doi.org/10.1186/s41182-016-0021-x eCollection 2016.
Article
PubMed
PubMed Central
Google Scholar
Kipruto EK, Ochieng AO, Anyona DN, Mbalanya M, Mutua EN, Onguru D, Nyamongo IK, Estambale BBA. Effect of climatic variability on malaria trends in Baringo County, Kenya. Malar J. 2017;16(1):220. https://doi.org/10.1186/s12936-017-1848-2.
Article
PubMed
PubMed Central
Google Scholar
Kibret S, Lautze J, McCartney M, Nhamo L, Wilson GG. Malaria and large dams in sub-Saharan Africa: future impacts in a changing climate. Malar J. 2016;15(1):448. https://doi.org/10.1186/s12936-016-1498-9.
Article
PubMed
PubMed Central
Google Scholar
Kovats RS, Campbell-Lendrum DH, McMichael AJ, Woodward A, Cox JS. Early effects of climate change: do they include changes in vector-borne disease. Philos Trans R Soc Lond Ser B Biol Sci. 2001;356(1411):1057–68.
Article
CAS
Google Scholar
Misslin R, Telle O, Daudé E, Vaguet A, Paul RE. Urban climate versus global climate change-what makes the difference for dengue? Ann N Y Acad Sci. 2016;1382(1):56–72. https://doi.org/10.1111/nyas.13084.
Article
PubMed
Google Scholar
Struchiner CJ, Rocklöv J, Wilder-Smith A, Massad E. Increasing dengue incidence in Singapore over the past 40 years: population growth, climate and mobility. PLoS One. 2015;10(8):e0136286. https://doi.org/10.1371/journal.pone.0136286.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dhimal M, Ahrens B, Kuch U. Climate change and spatiotemporal distributions of vector-borne diseases in Nepal--a systematic synthesis of literature. PLoS One. 2015;10(6):e0129869. https://doi.org/10.1371/journal.pone.0129869.
Article
CAS
PubMed
PubMed Central
Google Scholar
Méndez-Lázaro P, Muller-Karger FE, Otis D, McCarthy MJ, Peña-Orellana M. Assessing climate variability effects on dengue incidence in San Juan, Puerto Rico. Int J Environ Res Public Health. 2014;11(9):9409–28. https://doi.org/10.3390/ijerph110909409.
Article
PubMed
PubMed Central
Google Scholar
Xuan le TT, Van Hau P, Thu do T, Toan do TT. Estimates of meteorological variability in association with dengue cases in a coastal city in northern Vietnam: an ecological study. Glob Health Action. 2014;7:23119. https://doi.org/10.3402/gha.v7.23119.
Article
PubMed
Google Scholar
Van Nguyen O, Kawamura K, Trong DP, Gong Z, Suwandana E. Temporal change and its spatial variety on land surface temperature and land use changes in the red River Delta, Vietnam, using MODIS time-series imagery. Environ Monit Assess. 2015;187(7):464. https://doi.org/10.1007/s10661-015-4691-3.
Article
PubMed
Google Scholar
Trewin BJ, Kay BH, Darbro JM, Hurst TP. Increased container-breeding mosquito risk owing to drought-induced changes in water harvesting and storage in Brisbane, Australia. Int Health. 2013;5(4):251–8. https://doi.org/10.1093/inthealth/iht023.
Article
PubMed
Google Scholar
Su GL. Correlation of climatic factors and dengue incidence in metro Manila, Philippines. Ambio. 2008;37(4):292–4.
Article
Google Scholar
Quintero-Herrera LL, Ramírez-Jaramillo V, Bernal-Gutiérrez S, Cárdenas-Giraldo EV, Guerrero-Matituy EA, Molina-Delgado AH, et al. Potential impact of climatic variability on the epidemiology of dengue in Risaralda, Colombia, 2010-2011. J Infect Public Health. 2015;8(3):291–7. https://doi.org/10.1016/j.jiph.2014.11.005.
Article
PubMed
Google Scholar
Zheng J, Han W, Jiang B, Ma W, Zhang Y. Infectious diseases and tropical cyclones in Southeast China. Int J Environ Res Public Health. 2017;14(5). https://doi.org/10.3390/ijerph14050494.
Barcellos C, Lowe R. Expansion of the dengue transmission area in Brazil: the role of climate and cities. Tropical Med Int Health. 2014;19(2):159–68. https://doi.org/10.1111/tmi.12227.
Article
Google Scholar
Courtin F, Jamonneau V, Duvallet G, Garcia A, Coulibaly B, Doumenge JP, et al. Sleeping sickness in West Africa (1906-2006): changes in spatial repartition and lessons from the past. Tropical Med Int Health. 2008;13(3):334–44. https://doi.org/10.1111/j.1365-3156.2008.02007.x.
Article
CAS
Google Scholar
Courtin F, Rayaissé JB, Tamboura I, Serdébéogo O, Koudougou Z, Solano P, et al. Updating the northern tsetse limit in Burkina Faso (1949-2009): impact of global change. Int J Environ Res Public Health. 2010;7(4):1708–19. https://doi.org/10.3390/ijerph7041708.
Article
PubMed
PubMed Central
Google Scholar
Wamwiri FN, Changasi RE. Tsetse flies (Glossina) as vectors of human African trypanosomiasis: a review. Biomed Res Int. 2016;2016:6201350. https://doi.org/10.1155/2016/6201350.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lord JS, Hargrove JW, Torr SJ, Vale GA. Climate change and African trypanosomiasis vector populations in Zimbabwe's Zambezi Valley: a mathematical modelling study. PLoS Med. 2018;15(10):e1002675. https://doi.org/10.1371/journal.pmed.1002675.
Article
PubMed
PubMed Central
Google Scholar
Chalghaf B, Chemkhi J, Mayala B, Harrabi M, Benie GB, Michael E, et al. Ecological niche modeling predicting the potential distribution of Leishmania vectors in the Mediterranean basin: impact of climate change. Parasit Vectors. 2018;11(1):461. https://doi.org/10.1186/s13071-018-3019-x.
Article
PubMed
PubMed Central
Google Scholar
Visintin AM, Beranek MD, Amieva MJ, Rosa JR, Almirón WR, Salomón O. Spread of Phlebotominae in temperate climates: province of Córdoba, Argentina. Mem Inst Oswaldo Cruz. 2016;111(1):75–8. https://doi.org/10.1590/0074-02760150381.
Article
PubMed
PubMed Central
Google Scholar
Xu L, Schmid BV, Liu J, Si X, Stenseth NC, Zhang Z. The trophic responses of two different rodent-vector-plague systems to climate change. Proc Biol Sci. 2015;282(1800):20141846. https://doi.org/10.1098/rspb.2014.1846.
Article
PubMed
PubMed Central
Google Scholar
Bett B, Kiunga P, Gachohi J, Sindato C, Mbotha D, Robinson T, et al. Effects of climate change on the occurrence and distribution of livestock diseases. Prev Vet Med. 2017;137(Pt B):119–29. https://doi.org/10.1016/j.prevetmed.2016.11.019 Epub 2016 Dec 14.
Article
CAS
PubMed
Google Scholar
Mutua EN, Bukachi SA, Bett BK, Estambale BA, Nyamongo IK. “We do not bury dead livestock like human beings”: community behaviors and risk of Rift Valley fever virus infection in Baringo County, Kenya. PLoS Negl Trop Dis. 2017;11(5):e0005582. https://doi.org/10.1371/journal.pntd.0005582 eCollection 2017 May.
Article
PubMed
PubMed Central
Google Scholar
Baylis M, Barker CM, Caminade C, Joshi BR, Pant GR, Rayamajhi A, et al. Emergence or improved detection of Japanese encephalitis virus in the Himalayan highlands? Trans R Soc Trop Med Hyg. 2016;110(4):209–11. https://doi.org/10.1093/trstmh/trw012.
Article
PubMed
PubMed Central
Google Scholar
Ebi KL, Ogden NH, Semenza JC, Woodward A. Detecting and attributing health burdens to climate change. Environ Health Perspect. 2017;125(8):085004. https://doi.org/10.1289/EHP1509.
Article
PubMed
PubMed Central
Google Scholar
Roy-Dufresne E, Logan T, Simon JA, Chmura GL, Millien V. Poleward expansion of the white-footed mouse (Peromyscus leucopus) under climate change: implications for the spread of Lyme disease. PLoS One. 2013;8(11):e80724. https://doi.org/10.1371/journal.pone.0080724 eCollection 2013.
Article
CAS
PubMed
PubMed Central
Google Scholar
United Nations General Assembly. Transforming our world: the 2030 agenda for sustainable development. UN Doc. A/RES/70/1. 2015. https://www.unescap.org/2030-agenda. Accessed 27 Oct 2015.
Google Scholar