The World Health Organization. http://www.who.int/en/news-room/fact-sheets/detail/the-top-10-causes-of-death. Accessed 24 May 2018.
The World Health Organization. http://www.who.int/en/news-room/fact-sheets/detail/antimicrobial-resistance. Accessed 15 Feb 2018.
Bustinduy AL, Sutherland LJ, Chang-Cojulun A, Malhotra I, DuVall AS, Fairley JK, et al. Age-stratified profiles of serum IL-6, IL-10, and TNF-alpha cytokines among Kenyan children with Schistosoma haematobium, Plasmodium falciparum, and other chronic parasitic co-infections. Am J Trop Med Hyg. 2015;92:945–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Griffiths EC, Pedersen AB, Fenton A, Petchey OL. Analysis of a summary network of co-infection in humans reveals that parasites interact most via shared resources. Proc Biol Sci. 2014;281:20132286.
Article
PubMed
PubMed Central
Google Scholar
Bourtzis K, Dobson SL, Xi Z, Rasgon JL, Calvitti M, Moreira LA, et al. Harnessing mosquito-Wolbachia symbiosis for vector and disease control. Acta Trop. 2014;132:S150–63.
Article
PubMed
Google Scholar
Jeffries CL, Walker T. The potential use of Wolbachia-based mosquito biocontrol strategies for Japanese encephalitis. Plos Negl Trop Dis. 2015;9:e0003576.
Article
PubMed
PubMed Central
CAS
Google Scholar
LePage D, Bordenstein SR. Wolbachia: can we save lives with a great pandemic? Trends Parasitol. 2013;29:385–93.
Article
PubMed
PubMed Central
Google Scholar
Walker T, Moreira LA. Can Wolbachia be used to control malaria? Mem Inst Oswaldo Cruz. 2011;106(Suppl 1):212–7.
Article
PubMed
Google Scholar
Kambris Z, Cook PE, Phuc HK, Sinkins SP. Immune activation by life-shortening Wolbachia and reduced filarial competence in mosquitoes. Science. 2009;326:134–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bian G, Joshi D, Dong Y, Lu P, Zhou G, Pan X, et al. Wolbachia invades Anopheles stephensi populations and induces refractoriness to Plasmodium infection. Science. 2013;340:748–51.
Article
CAS
PubMed
Google Scholar
Kambris Z, Blagborough AM, Pinto SB, Blagrove MSC, Godfray HCJ, Sinden RE, et al. Wolbachia stimulates immune gene expression and inhibits Plasmodium development in Anopheles gambiae. Plos Pathog. 2010;6:e1001143.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tunholi VM, Lorenzoni PO, da Silva YH, Tunholi-Alves VM, Boeloni JN, da Silva MA, et al. Molluscicidal potential of Heterorhabditis baujardi (Rhabditida: Heterorhabditidae), strain LPP7, on Lymnaea columella (Gastropoda: Pulmonata): An alternative for biological control of fasciolosis. Acta Trop. 2017;173:23–9.
Article
PubMed
Google Scholar
Tunholi-Alves VM, Tunholi VM, Lustrino D, Amaral LS, Thiengo SC, Pinheiro J. Changes in the reproductive biology of Biomphalaria glabrata experimentally infected with the nematode Angiostrongylus cantonensis. J Invertebr Pathol. 2011;108:220–3.
Article
PubMed
Google Scholar
Nacher M, Singhasivanon P, Silachamroon U, Treeprasertsuk S, Vannaphan S, Traore B, et al. Helminth infections are associated with protection from malaria-related acute renal failure and jaundice in Thailand. Am J Trop Med Hyg. 2001;65:834–6.
Article
CAS
PubMed
Google Scholar
Ngwenya BZ. Enhanced resistance to Plasmodium berghei in mice previously infected with Trichinella spiralis. Parasite Immunol. 1982;4:197–207.
Article
CAS
PubMed
Google Scholar
Nacher M, Singhasivanon P, Treeprasertsuk S, Vannaphan S, Traore B, Looareesuwan S, Gay F. Intestinal helminths and malnutrition are independently associated with protection from cerebral malaria in Thailand. Ann Trop Med Parasitol. 2002;96:5–13.
Article
CAS
PubMed
Google Scholar
Abbate JL, Ezenwa VO, Guegan JF, Choisy M, Nacher M, Roche B. Disentangling complex parasite interactions: protection against cerebral malaria by one helminth species is jeopardized by co-infection with another. Plos Negl Trop Dis. 2018;12:e0006483.
Article
PubMed
PubMed Central
Google Scholar
Lemaitre M, Watier L, Briand V, Garcia A, Le Hesran JY, Cot M. Coinfection with Plasmodium falciparum and Schistosoma haematobium: additional evidence of the protective effect of Schistosomiasis on malaria in Senegalese children. Am J Trop Med Hyg. 2014;90:329–34.
Article
PubMed
PubMed Central
Google Scholar
Briand V, Watier L, JY LEH, Garcia A, Cot M. Coinfection with Plasmodium falciparum and Schistosoma haematobium: protective effect of schistosomiasis on malaria in Senegalese children? Am J Trop Med Hyg. 2005;72:702–7.
Article
PubMed
Google Scholar
Nyakundi RK, Nyamongo O, Maamun J, Akinyi M, Mulei I, Farah IO, et al. Protective effect of chronic schistosomiasis in baboons coinfected with Schistosoma mansoni and Plasmodium knowlesi. Infect Immun. 2016;84:1320–30.
Article
PubMed
PubMed Central
Google Scholar
Moriyasu T, Nakamura R, Deloer S, Senba M, Kubo M, Inoue M, et al. Schistosoma mansoni infection suppresses the growth of Plasmodium yoelii parasites in the liver and reduces gametocyte infectivity to mosquitoes. Plos Negl Trop Dis. 2018;12:e0006197.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fernandez Ruiz D, Dubben B, Saeftel M, Endl E, Deininger S, Hoerauf A, et al. Filarial infection induces protection against P. berghei liver stages in mice. Microbes Infect. 2009;11:172–80.
Article
CAS
PubMed
Google Scholar
Lello J, McClure SJ, Tyrrell K, Viney ME. Predicting the effects of parasite co-infection across species boundaries. Proc Biol Sci. 2018;285:20172610.
Article
PubMed
PubMed Central
CAS
Google Scholar
van Duivenvoorde LM, Voorberg-van der Wel A, van der Werff NM, Braskamp G, Remarque EJ, Kondova I, et al. Suppression of Plasmodium cynomolgi in rhesus macaques by coinfection with Babesia microti. Infect Immun. 2010;78:1032–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gonzalez-Ceron L, Santillan F, Rodriguez MH, Mendez D, Hernandez-Avila JE. Bacteria in midguts of field-collected Anopheles albimanus block Plasmodium vivax sporogonic development. J Med Entomol. 2003;40:371–4.
Article
PubMed
Google Scholar
Pumpuni CB, Beier MS, Nataro JP, Guers LD, Davis JR. Plasmodium falciparum: inhibition of sporogonic development in Anopheles stephensi by gram-negative bacteria. Exp Parasitol. 1993;77:195–9.
Article
CAS
PubMed
Google Scholar
Zhu X, Chen L, Wu J, Tang H, Wang Y. Salmonella typhimurium infection reduces Schistosoma japonicum worm burden in mice. Sci Rep. 2017;7:1349.
Article
PubMed
PubMed Central
CAS
Google Scholar
Manko A, Motta JP, Cotton JA, Feener T, Oyeyemi A, Vallance BA, et al. Giardia co-infection promotes the secretion of antimicrobial peptides beta-defensin 2 and trefoil factor 3 and attenuates attaching and effacing bacteria-induced intestinal disease. Plos One. 2017;12:e0178647.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hughes GL, Koga R, Xue P, Fukatsu T, Rasgon JL. Wolbachia infections are virulent and inhibit the human malaria parasite Plasmodium falciparum in Anopheles Gambiae. Plos Pathog. 2011;7:e1002043.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murdock CC, Blanford S, Hughes GL, Rasgon JL, Thomas MB. Temperature alters Plasmodium blocking by Wolbachia. Clin Rep UK. 2014;4:3932.
Google Scholar
Teo TH, Lum FM, Ghaffar K, Chan YH, Amrun SN, Tan JJL, et al. Plasmodium co-infection protects against chikungunya virus-induced pathologies. Nat Commun. 2018;9:3905.
Article
PubMed
PubMed Central
CAS
Google Scholar
Teo TH, Howland SW, Claser C, Gun SY, Poh CM, Lee WW, et al. Co-infection with chikungunya virus alters trafficking of pathogenic CD8(+) T cells into the brain and prevents Plasmodium-induced neuropathology. EMBO Mol Med. 2018;10:121–38.
Article
CAS
PubMed
Google Scholar
McFarlane AJ, McSorley HJ, Davidson DJ, Fitch PM, Errington C, Mackenzie KJ, et al. Enteric helminth-induced type I interferon signaling protects against pulmonary virus infection through interaction with the microbiota. J Allergy Clin Immunol. 2017;140:1068–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wuerthner VP, Hua J, Hoverman JT. The benefits of coinfection: trematodes alter disease outcomes associated with virus infection. J Anim Ecol. 2017;86:921–31.
Article
PubMed
Google Scholar
Chowaniec W, Wescott RB, Congdon LL. Interaction of Nematospiroides dubius and influenza virus in mice. Exp Parasitol. 1972;32:33–44.
Article
CAS
PubMed
Google Scholar
Brutus L, Watier L, Hanitrasoarnampionona V, Razanatsoarilala H, Cot M. Confirmation of the protective effect of Ascaris lumbricoides on Plasmodium falciparum infection: results of a randomized trial in Madagascar. Am J Trop Med Hyg. 2007;77:1091–5.
Article
PubMed
Google Scholar
Brutus L, Watier L, Briand V, Hanitrasoamampionona V, Razanatsoarilala H, Cot M. Parasitic co-infections: does Ascaris lumbricoides protect against Plasmodium falciparum infection? Am J Trop Med Hyg. 2006;75:194–8.
Article
PubMed
Google Scholar
Kirwan P, Jackson AL, Asaolu SO, Molloy SF, Abiona TC, Bruce MC, et al. Impact of repeated four-monthly anthelmintic treatment on Plasmodium infection in preschool children: a double-blind placebo-controlled randomized trial. Bmc Infect Dis. 2010;10:277.
Article
PubMed
PubMed Central
Google Scholar
Graham AL, Lamb TJ, Read AF, Allen JE. Malaria-filaria coinfection in mice makes malarial disease more severe unless filarial infection achieves patency. J Infect Dis. 2005;191:410–21.
Article
PubMed
Google Scholar
Aliota MT, Chen CC, Dagoro H, Fuchs JF, Christensen BM. Filarial worms reduce Plasmodium infectivity in mosquitoes. Plos Negl Trop Dis. 2011;5:e963.
Article
PubMed
PubMed Central
Google Scholar
Kwan JL, Seitz AE, Fried M, Lee KL, Metenou S, Morrison R, et al. Seroepidemiology of helminths and the association with severe malaria among infants and young children in Tanzania. Plos Negl Trop Dis. 2018;12:e0006345.
Article
PubMed
PubMed Central
CAS
Google Scholar
Verma R, Kushwaha V, Pandey S, Thota JR, Vishwakarma P, Parmar N, et al. Leishmania donovani molecules recognized by sera of filaria infected host facilitate filarial infection. Parasitol Res. 2018;117:2901–12.
Article
PubMed
Google Scholar
Kotob MH, Gorgoglione B, Kumar G, Abdelzaher M, Saleh M, El-Matbouli M. The impact of Tetracapsuloides bryosalmonae and Myxobolus cerebralis co-infections on pathology in rainbow trout. Parasit Vectors. 2017;10:442.
Article
PubMed
PubMed Central
CAS
Google Scholar
JL DELC, Venuto Moura AP, Franca-Silva JC, DESG M, Oliveira Silva S, Norma Melo M, et al. Experimental mixed infection of Leishmania (Leishmania) amazonensis and Leishmania (L.) infantum in hamsters (Mesocricetus auratus). Parasitol. 2017;144:1191–202.
Article
CAS
Google Scholar
Ademola IO, Odeniran PO. Co-infection with Plasmodium berghei and Trypanosoma brucei increases severity of malaria and trypanosomiasis in mice. Acta Trop. 2016;159:29–35.
Article
PubMed
Google Scholar
Soares L, Ellis VA, Ricklefs RE. Co-infections of haemosporidian and trypanosome parasites in a North American songbird. Parasitol. 2016;143:1930–8.
Article
CAS
Google Scholar
Lyke KE, Dicko A, Dabo A, Sangare L, Kone A, Coulibaly D, et al. Association of Schistosoma haematobium infection with protection against acute Plasmodium falciparum malaria in Malian children. Am J Trop Med Hyg. 2005;73:1124–30.
Article
PubMed
Google Scholar
Lyke KE, Dabo A, Sangare L, Arama C, Daou M, Diarra I, et al. Effects of concomitant Schistosoma haematobium infection on the serum cytokine levels elicited by acute Plasmodium falciparum malaria infection in Malian children. Infect Immun. 2006;74:5718–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Diallo TO, Remoue F, Schacht AM, Charrier N, Dompnier JP, Pillet S, et al. Schistosomiasis co-infection in humans influences inflammatory markers in uncomplicated Plasmodium falciparum malaria. Parasite Immunol. 2004;26:365–9.
Article
CAS
PubMed
Google Scholar
Amoani B, Ameyaw EO, Asante D-B, Armah FA, Prah J, Botchey CPK, et al. Effect of pre-existing Schistosoma haematobium infection on Plasmodium berghei multiplications in imprinting control region mice. Asian Pac J Trop Biomed. 2015;5:488–92.
Article
Google Scholar
Sokhna C, Le Hesran JY, Mbaye PA, Akiana J, Camara P, Diop M, et al. Increase of malaria attacks among children presenting concomitant infection by Schistosoma mansoni in Senegal. Malar J. 2004;3:43.
Article
PubMed
PubMed Central
Google Scholar
Legesse M, Erko B, Balcha F. Increased parasitaemia and delayed parasite clearance in Schistosoma mansoni and Plasmodium berghei co-infected mice. Acta Trop. 2004;91:161–6.
Article
PubMed
Google Scholar
Sangweme D, Shiff C, Kumar N. Plasmodium yoelii: adverse outcome of non-lethal P. yoelii malaria during co-infection with Schistosoma mansoni in BALB/c mouse model. Exp Parasitol. 2009;122:254–9.
Article
PubMed
PubMed Central
Google Scholar
Wilson S, Vennervald BJ, Kadzo H, Ireri E, Amaganga C, Booth M, et al. Hepatosplenomegaly in Kenyan schoolchildren: exacerbation by concurrent chronic exposure to malaria and Schistosoma mansoni infection. Trop Med Int Health. 2007;12:1442–9.
Article
PubMed
Google Scholar
Roussilhon C, Brasseur P, Agnamey P, Perignon J-L, Druilhe P. Understanding human-Plasmodium falciparum immune interactions uncovers the immunological role of worms. Plos One. 2010;5:e9309.
Article
PubMed
PubMed Central
CAS
Google Scholar
Boel M, Carrara VI, Rijken M, Proux S, Nacher M, Pimanpanarak M, et al. Complex interactions between soil-transmitted helminths and malaria in pregnant women on the Thai-Burmese border. Plos Negl Trop Dis. 2010;4:e887.
Article
PubMed
PubMed Central
Google Scholar
Courtin D, Djilali-Saiah A, Milet J, Soulard V, Gaye O, Migot-Nabias F, et al. Schistosoma haematobium infection affects Plasmodium falciparum-specific IgG responses associated with protection against malaria. Parasite Immunol. 2011;33:124–31.
Article
CAS
PubMed
Google Scholar
Wiria AE, Prasetyani MA, Hamid F, Wammes LJ, Lell B, Ariawan I, et al. Does treatment of intestinal helminth infections influence malaria? Background and methodology of a longitudinal study of clinical, parasitological and immunological parameters in Nangapanda, Flores, Indonesia (ImmunoSPIN Study). Bmc Infect Dis. 2010;10:77.
Article
PubMed
PubMed Central
CAS
Google Scholar
Florey LS, King CH, Van Dyke MK, Muchiri EM, Mungai PL, Zimmerman PA, et al. Partnering parasites: evidence of synergism between heavy Schistosoma haematobium and Plasmodium species infections in Kenyan children. Plos Negl Trop Dis. 2012;6:e1723.
Article
PubMed
PubMed Central
Google Scholar
Wiria AE, Hamid F, Wammes LJ, Kaisar MM, May L, Prasetyani MA, et al. The effect of three-monthly albendazole treatment on malarial parasitemia and allergy: a household-based cluster-randomized, double-blind, placebo-controlled trial. Plos One. 2013;8:e57899.
Article
CAS
PubMed
PubMed Central
Google Scholar
Read AF, Taylor LH. The ecology of genetically diverse infections. Science. 2001;292:1099–102.
Article
CAS
PubMed
Google Scholar
Bilenko N, Levy A, Dagan R, Deckelbaum RJ, El-On Y, Fraser D. Does co-infection with Giardia lamblia modulate the clinical characteristics of enteric infections in young children? Eur J Epidemiol. 2004;19:877–83.
Article
PubMed
Google Scholar
Furze RC, Hussell T, Selkirk ME. Amelioration of influenza-induced pathology in mice by coinfection with Trichinella spiralis. Infect Immun. 2006;74:1924–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rossi M, Castiglioni P, Hartley MA, Eren RO, Prevel F, Desponds C, et al. Type I interferons induced by endogenous or exogenous viral infections promote metastasis and relapse of leishmaniasis. Proc Natl Acad Sci USA. 2017;114:4987–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dietze KK, Dittmer U, Koudaimi DK, Schimmer S, Reitz M, Breloer M, et al. Filariae-retrovirus co-infection in mice is associated with suppressed virus-specific IgG immune response and higher viral loads. Plos Negl Trop Dis. 2016;10:e0005170.
Article
PubMed
PubMed Central
CAS
Google Scholar
Attallah AM, Abdallah SO, Albannan MS, Omran MM, Attallah AA, Farid K. Impact of hepatitis C virus/Schistosoma mansoni coinfection on the circulating levels of HCV-NS4 protein and extracellular-matrix deposition in patients with different hepatic fibrosis stages. Am J Trop Med Hyg. 2016;95:1044–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li W, Dong H, Huang Y, Chen T, Kong X, Sun H, et al. Clonorchis sinensis co-infection could affect the disease state and treatment response of HBV patients. Plos Negl Trop Dis. 2016;10:e0004806.
Article
PubMed
PubMed Central
CAS
Google Scholar
Knowles SC, Webster BL, Garba A, Sacko M, Diaw OT, Fenwick A, et al. Epidemiological interactions between urogenital and intestinal human schistosomiasis in the context of praziquantel treatment across three west African countries. Plos Negl Trop Dis. 2015;9:e0004019.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mazigo HD, Nuwaha F, Wilson S, Kinung'hi SM, Morona D, Waihenya R, et al. Epidemiology and interactions of Human Immunodeficiency Virus-1 and Schistosoma mansoni in sub-Saharan Africa. Infect Dis Poverty. 2013;2:2.
Article
PubMed
PubMed Central
Google Scholar
Chukwuanukwu RC, Ukaejiofo EO, Ele PU, Onyenekwe CC, Chukwuanukwu TO, Ifeanyichukwu MO. Evaluation of some haemostatic parameters in falciparum malaria and HIV co-infection. Br J Biomed Sci. 2016;73:168–73.
Article
PubMed
Google Scholar
Hochman SE, Madaline TF, Wassmer SC, Mbale E, Choi N, Seydel KB, et al. Fatal pediatric cerebral malaria Is associated with intravascular monocytes and platelets that are increased with HIV coinfection. MBio. 2015;6:e01390–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mooney JP, Lokken KL, Byndloss MX, George MD, Velazquez EM, Faber F, et al. Inflammation-associated alterations to the intestinal microbiota reduce colonization resistance against non-typhoidal Salmonella during concurrent malaria parasite infection. Sci Rep. 2015;5:14603.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chukwuanukwu RC, Onyenekwe CC, Martinez-Pomares L, Flynn R, Singh S, Amilo GI, et al. Modulation of the immune response to Mycobacterium tuberculosis during malaria/M. tuberculosis co-infection. Clin Exp Immunol. 2017;187:259–68.
Article
CAS
PubMed
Google Scholar
Mhimbira F, Hella J, Said K, Kamwela L, Sasamalo M, Maroa T, et al. Prevalence and clinical relevance of helminth co-infections among tuberculosis patients in urban Tanzania. Plos Negl Trop D. 2017;11:e0005342.
Article
Google Scholar
Li XX, Chen JX, Wang LX, Sun J, Chen SH, Chen JH, et al. Profiling B and T cell immune responses to co-infection of Mycobacterium tuberculosis and hookworm in humans. Infect Dis Poverty. 2015;4:20.
Article
PubMed
PubMed Central
Google Scholar
Salazar-Castanon VH, Legorreta-Herrera M, Rodriguez-Sosa M. Helminth parasites alter protection against Plasmodium infection. Biomed Res Int. 2014;2014:913696.
Article
PubMed
PubMed Central
Google Scholar
Adegnika AA, Kremsner PG. Epidemiology of malaria and helminth interaction: a review from 2001 to 2011. Curr Opin HIV AIDS. 2012;7:221–4.
Article
PubMed
Google Scholar
Knowles SCL. The effect of helminth co-infection on malaria in mice: A meta-analysis. Int J Parasitol. 2011;41:1041–51.
Article
PubMed
Google Scholar
Nacher M. Interactions between worms and malaria: Good worms or bad worms? Malaria J. 2011;10:259.
Article
Google Scholar
Hoverman JT, Hoye BJ, Johnson PT. Does timing matter? How priority effects influence the outcome of parasite interactions within hosts. Oecologia. 2013;173:1471–80.
Article
PubMed
Google Scholar
Diallo TOE, Remoue F, Gaayeb L, Schacht AM, Charrier N, De Clerck D, et al. Schistosomiasis coinfection in children influences acquired immune response against Plasmodium falciparum malaria antigens. Plos One. 2010;5:e12764.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ulrich Y, Schmid-Hempel P. Host modulation of parasite competition in multiple infections. Proc Biol Sci. 2012;279:2982–9.
Article
PubMed
PubMed Central
Google Scholar
Davenport GC, Hittner JB, Otieno V, Karim Z, Mukundan H, Fenimore PW, et al. Reduced Parasite Burden in Children with Falciparum Malaria and Bacteremia Coinfections: Role of Mediators of Inflammation. Mediators Inflamm. 2016;2016:4286576.
Article
PubMed
PubMed Central
CAS
Google Scholar
de Rezende MC, Araujo ES, Moreira JM, Rodrigues VF, Rodrigues JL, Pereira CA, et al. Effect of different stages of Schistosoma mansoni infection on the parasite burden and immune response to Strongyloides venezuelensis in co-infected mice. Parasitol Res. 2015;114:4601–16.
Article
PubMed
Google Scholar
Wilson S, Dunne DW. Advances in our understanding of the epidemiology of Plasmodium and schistosome infection: informing coinfection studies. Curr Opin HIV AIDS. 2012;7:225–30.
Article
CAS
PubMed
Google Scholar
Alcantara-Neves NM, de SG Britto G, Veiga RV, Figueiredo CA, Fiaccone RL, da Conceicao JS, et al. Effects of helminth co-infections on atopy, asthma and cytokine production in children living in a poor urban area in Latin America. Bmc Res Notes. 2014;7:817.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ezenwa VO, Jolles AE. From host immunity to pathogen invasion. the effects of helminth coinfection on the dynamics of microparasites. Integr Comp Biol. 2011;51:540–51.
Article
PubMed
Google Scholar
Hoeve MA, Mylonas KJ, Fairlie-Clarke KJ, Mahajan SM, Allen JE, Graham AL. Plasmodium chabaudi limits early Nippostrongylus brasiliensis-induced pulmonary immune activation and Th2 polarization in co-infected mice. Bmc Immunol. 2009;10:60.
Article
PubMed
PubMed Central
CAS
Google Scholar
Salgame P, Yap GS, Gause WC. Effect of helminth-induced immunity on infections with microbial pathogens. Nat Immunol. 2013;14:1118–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Skapenko A, Niedobitek GU, Kalden JR, Lipsky PE, Schulze-Koops H. Generation and regulation of human Th1-biased immune responses in vivo: A critical role for IL-4 and IL-10. J Immunol. 2004;172:6427–34.
Article
CAS
PubMed
Google Scholar
Waknine-Grinberg JH, Gold D, Ohayon A, Flescher E, Heyfets A, Doenhoff MJ, et al. Schistosoma mansoni infection reduces the incidence of murine cerebral malaria. Malaria J. 2010;9:5.
Article
CAS
Google Scholar
MacDonald AS, Patton EA, La Flamme AC, Araujo MI, Huxtable CR, Bauman B, et al. Impaired Th2 development and increased mortality during Schistosoma mansoni infection in the absence of CD40/CD154 interaction. J Immunol. 2002;168:4643–9.
Article
CAS
PubMed
Google Scholar
Zwingenberger K, Hohmann A, de Brito MC, Ritter M. Impaired balance of interleukin-4 and interferon-gamma production in infections with Schistosoma mansoni and intestinal nematodes. Scand J Immunol. 1991;34:243–51.
Article
CAS
PubMed
Google Scholar
Wang ML, Cao YM, Luo EJ, Zhang Y, Guo YJ. Pre-existing Schistosoma japonicum infection alters the immune response to Plasmodium berghei infection in C57BL/6 mice. Malaria J. 2013;12:322.
Article
CAS
Google Scholar
Wang ML, Feng YH, Pang W, Qi ZM, Zhang Y, Guo YJ, et al. Parasite densities modulate susceptibility of mice to cerebral malaria during co-infection with Schistosoma japonicum and Plasmodium berghei. Malaria J. 2014;13:116.
Article
Google Scholar
Lyke KE, Wang A, Dabo A, Arama C, Daou M, Diarra I, et al. Antigen-Specific B Memory Cell Responses to Plasmodium falciparum malaria antigens and Schistosoma haematobium antigens in co-Infected Malian children. Plos One. 2012;7:e37868.
Article
CAS
PubMed
PubMed Central
Google Scholar
Doumbo S, Tran TM, Sangala J, Li S, Doumtabe D, Kone Y, et al. Co-infection of long-term carriers of Plasmodium falciparum with Schistosoma haematobium enhances protection from febrile malaria: a prospective cohort study in Mali. PLoS Negl Trop Dis. 2014;8:e3154.
Article
PubMed
PubMed Central
Google Scholar
Naing C, Whittaker MA, Nyunt-Wai V, Reid SA, Wong SF, Mak JW, et al. Malaria and soil-transmitted intestinal helminth co-infection and its effect on anemia: a meta-analysis. Trans R Soc Trop Med Hyg. 2013;107:672–83.
Article
PubMed
Google Scholar
Kolbaum J, Eschbach ML, Steeg C, Jacobs T, Fleischer B, Breloer M. Efficient control of Plasmodium yoelii infection in BALB/c and C57BL/6 mice with pre-existing Strongyloides ratti infection. Parasite Immunol. 2012;34:388–93.
Article
CAS
PubMed
Google Scholar
Nitcheu J, Bonduelle O, Combadiere C, Tefit M, Seilhean D, Mazier D, Combadiere B. Perforin-dependent brain-infiltrating cytotoxic CD8+ T lymphocytes mediate experimental cerebral malaria pathogenesis. J Immunol. 2003;170:2221–8.
Article
CAS
PubMed
Google Scholar
Engwerda CR, Mynott TL, Sawhney S, De Souza JB, Bickle QD, Kaye PM. Locally up-regulated lymphotoxin alpha, not systemic tumor necrosis factor alpha, is the principle mediator of murine cerebral malaria. J Exp Med. 2002;195:1371–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Specht S, Ruiz DF, Dubben B, Deininger S, Hoerauf A. Filaria-induced IL-10 suppresses murine cerebral malaria. Microbes Infect. 2010;12:635–42.
Article
CAS
PubMed
Google Scholar
Boef AG, May L, van Bodegom D, van Lieshout L, Verweij JJ, Maier AB, et al. Parasitic infections and immune function: effect of helminth infections in a malaria endemic area. Immunobiol. 2013;218:706–11.
Article
CAS
Google Scholar
Turner JD, Meurs L, Dool P, Bourke CD, Mbow M, Dieye TN, et al. Schistosome infection is associated with enhanced whole-blood IL-10 secretion in response to cercarial excretory/secretory products. Parasite Immunol. 2013;35:147–56.
Article
CAS
PubMed
Google Scholar
Noland GS, Urban JF Jr, Fried B, Kumar N. Counter-regulatory anti-parasite cytokine responses during concurrent Plasmodium yoelii and intestinal helminth infections in mice. Exp Parasitol. 2008;119:272–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dong Y, Manfredini F, Dimopoulos G. Implication of the mosquito midgut microbiota in the defense against malaria parasites. Plos Pathog. 2009;5:e1000423.
Article
PubMed
PubMed Central
Google Scholar
Craig JM, Scott AL. Antecedent Nippostrongylus infection alters the lung immune response to Plasmodium berghei. Parasite Immunol. 2017;39:10.
Article
PubMed Central
CAS
Google Scholar
Renia L, Potter SM. Co-infection of malaria with HIV: an immunological perspective. Parasite Immunol. 2006;28:589–95.
CAS
PubMed
Google Scholar
Karp CL, Auwaerter PG. Coinfection with HIV and tropical infectious diseases. II. Helminthic, fungal, bacterial, and viral pathogens. Clin Infect Dis. 2007;45:1214–20.
Article
PubMed
Google Scholar
Santoro F, Prata A, Castro CN, Capron A. Circulating antigens, immune complexes and C3d levels in human schistosomiasis: relationship with Schistosoma mansoni egg output. Clin Exp Immunol. 1980;42:219–25.
CAS
PubMed
PubMed Central
Google Scholar
Dempsey PW, Allison MED, Akkaraju S, Goodnow CC, Fearon DT. C3d of complement as a molecular adjuvant: Bridging innate and acquired immunity. Science. 1996;271:348–50.
Article
CAS
PubMed
Google Scholar
Chu KB, Kim SS, Lee SH, Lee HS, Joo KH, Lee JH, et al. Enhanced protection against Clonorchis sinensis induced by co-infection with Trichinella spiralis in rats. Parasite Immunol. 2014;36:522–30.
Article
CAS
PubMed
Google Scholar
Chen Y, Huang B, Huang S, Yu X, Li Y, Song W, et al. Coinfection with Clonorchis sinensis modulates murine host response against Trichinella spiralis infection. Parasitol Res. 2013;112:3167–79.
Article
PubMed
Google Scholar
Budischak SA, Wiria AE, Hamid F, Wammes LJ, Kaisar MMM, van Lieshout L, et al. Competing for blood: the ecology of parasite resource competition in human malaria-helminth co-infections. Ecol Lett. 2018;21:536–45.
Article
PubMed
Google Scholar
Rauque CA, Semenas L. Interactions among four parasite species in an amphipod population from Patagonia. J Helminthol. 2013;87:97–101.
Article
CAS
PubMed
Google Scholar
Mideo N. Parasite adaptations to within-host competition. Trends Parasitol. 2009;25:261–8.
Article
PubMed
Google Scholar
Wale N, Sim DG, Read AF. A nutrient mediates intraspecific competition between rodent malaria parasites in vivo. Proc Biol Sci. 2017;284:20171067.
Article
PubMed
PubMed Central
CAS
Google Scholar
Deans AM, Lyke KE, Thera MA, Plowe CV, Kone A, Doumbo OK, et al. Low multiplication rates of African Plasmodium falciparum isolates and lack of association of multiplication rate and red blood cell selectivity with malaria virulence. Am J Trop Med Hyg. 2006;74:554–63.
Article
PubMed
Google Scholar
Xong HV, Vanhamme L, Chamekh M, Chimfwembe CE, Van Den Abbeele J, Pays A, et al. A VSG expression site-associated gene confers resistance to human serum in Trypanosoma rhodesiense. Cell. 1998;95:839–46.
Article
CAS
PubMed
Google Scholar
Naus CWA, Jones FM, Satti MZ, Joseph S, Riley EM, Kimani G, et al. Serological responses among individuals in areas where both schistosomiasis and malaria are endemic: Cross-reactivity between Schistosoma mansoni and Plasmodium falciparum. J Infect Dis. 2003;187:1272–82.
Article
CAS
PubMed
Google Scholar
Tunholi VM, Monteiro CO, Cristina da Silva L, Dolinski Cde M, José dos Santos MA, Rodrigues Mde L, et al. Physiological alterations in Bradybaena similaris (Stylommatophora: Bradybaenidae) induced by the entomopathogenic nematode Heterorhabditis indica (Rhabditida: Heterorhabditidae) strain LPP1. Exp Parasitol. 2014;139:12–8.
Article
CAS
PubMed
Google Scholar
Tarasco E, Clausi M, Rappazzo G, Panzavolta T, Curto G, Sorino R, et al. Biodiversity of entomopathogenic nematodes in Italy. J Helminthol. 2015;89:359–66.
Article
CAS
PubMed
Google Scholar
Samish M, Glazer I. Entomopathogenic nematodes for the biocontrol of ticks. Trends Parasitol. 2001;17:368–71.
Article
CAS
PubMed
Google Scholar
Desenclos JC. Transmission parameters of vector-borne infections. Med Mal Infect. 2011;41:588–93.
Article
PubMed
Google Scholar
Tunholi-Alves VM, Tunholi VM, Pinheiro J, Thiengo SC. Effects of infection by larvae of Angiostrongylus cantonensis (Nematoda, Metastrongylidae) on the metabolism of the experimental intermediate host Biomphalaria glabrata. Exp Parasitol. 2012;131:143–7.
Article
CAS
PubMed
Google Scholar
dos Santos Bonfim TC, Maldonado A Jr, Tunholi VM, Tunholi-Alves VM, Faro MJ, Mota EM, et al. Biochemical and histopathological alterations in Biomphalaria glabrata due to co-infection by Angiostrongylus cantonensis and Echinostoma paraensei. J Invertebr Pathol. 2014;115:80–5.
Article
PubMed
CAS
Google Scholar
Jeffries CL, Walker T. Wolbachia biocontrol strategies for arboviral diseases and the potential influence of resident Wolbachia strains in mosquitoes. Curr Trop Med Rep. 2016;3:20–5.
Article
PubMed
PubMed Central
Google Scholar
Slatko BE, Luck AN, Dobson SL, Foster JM. Wolbachia endosymbionts and human disease control. Mol Biochem Parasit. 2014;195:88–95.
Article
CAS
Google Scholar
Pan X, Pike A, Joshi D, Bian G, McFadden MJ, Lu P, et al. The bacterium Wolbachia exploits host innate immunity to establish a symbiotic relationship with the dengue vector mosquito Aedes aegypti. ISME J. 2018;12:277–88.
Article
CAS
PubMed
Google Scholar
Kim W, Koo H, Richman AM, Seeley D, Vizioli J, Klocko AD, et al. Ectopic expression of a cecropin transgene in the human malaria vector mosquito Anopheles gambiae (Diptera: Culicidae): Effects on susceptibility to Plasmodium. J Med Entomol. 2004;41:447–55.
Article
CAS
PubMed
Google Scholar
McMeniman CJ, Lane RV, Cass BN, Fong AWC, Sidhu M, Wang Y-F, et al. Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science. 2009;323:141–4.
Article
CAS
PubMed
Google Scholar
Imai N, Rujeni N, Nausch N, Bourke CD, Appleby LJ, Cowan G, et al. Exposure, infection, systemic cytokine levels and antibody responses in young children concurrently exposed to schistosomiasis and malaria. Parasitol. 2011;138:1519–33.
Article
CAS
Google Scholar
Karaborklu S, Azizoglu U, Azizoglu ZB. Recombinant entomopathogenic agents: a review of biotechnological approaches to pest insect control. World J Microb Biot. 2017;34:14.
Article
CAS
Google Scholar
Fairlie-Clarke KJ, Allen JE, Read AF, Graham AL. Quantifying variation in the potential for antibody-mediated apparent competition among nine genotypes of the rodent malaria parasite Plasmodium chabaudi. Infect Genet Evol. 2013;20:270–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Efunshile AM, Olawale T, Stensvold CR, Kurtzhals JA, Konig B. Epidemiological study of the association between malaria and helminth infections in Nigeria. Am J Trop Med Hyg. 2015;92:578–82.
Article
PubMed
PubMed Central
Google Scholar
Mustafa MS, Rastogi V, Gupta RK, Jain S, Singh PMP, Gupta A. Wolbachia: The selfish Trojan Horse in dengue control. Med J Armed Forces India. 2016;72:373–6.
Article
CAS
PubMed
Google Scholar